Skip to main content

“Wet” Chemical Synthesis and Manipulation of Upconversion Nanoparticles

  • Chapter
  • First Online:
  • 6498 Accesses

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Development of facile synthesis strategies for high-quality lanthanide-doped upconversion nanoparticles with controlled composition, crystalline phase, shape, and size is crucial in tuning their chemical and optical properties and exploring their potential applications in diverse fields. This chapter focuses primarily on the formation mechanism of the crystallization (including nucleation and growth) for monodisperse nanocrystals and various synthetic procedures for the upconversion nanoparticles. Finally, various optical, chemical, and structural characterizations of upconversion nanoparticles are also summarized.

Xiaomin Li and Fan Zhang contributed together to this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Li, X., Shen, H., Niu, J., Zhang, Y., Wang, H., Li, L.S.: Columnar self-assembly of Cu2S hexagonal nanoplates induced by Tin(IV)-X complex as inorganic surface ligand. J. Am. Chem. Soc. 132, 12778–12779 (2010)

    Google Scholar 

  2. Li, X., Niu, J.Z., Shen, H., Xu, W., Wang, H., Li, L.S.: Shape controlled synthesis of tadpole-like and heliotrope seed-like AgInS2 nanocrystals. CrystEngComm 12, 4410–4415 (2010)

    Google Scholar 

  3. Li, X., Shen, H., Li, S., Niu, J.Z., Wang, H., Li, L.S.: Investigation on type-II Cu2S-CdS core/shell nanocrystals: synthesis and characterization. J. Mater. Chem. 20, 923–928 (2010)

    Google Scholar 

  4. Li, X., Si, H., Niu, J.Z., Shen, H., Zhou, C., Yuan, H., Wang, H., Ma, L., Li, L.S.: Size-controlled syntheses and hydrophilic surface modification of Fe3O4, Ag, and Fe3O4/Ag heterodimer nanocrystals. Dalton Trans. 39, 10984–10989 (2010)

    Google Scholar 

  5. Li, X., Wang, M., Shen, H., Zhang, Y., Wang, H., Li, L.S.: Inorganic Sn-X-complex-induced 1D, 2D, and 3D copper sulfide superstructures from anisotropic hexagonal nanoplate building blocks. Chem. Eur. J. 17, 10357–10364 (2011)

    Google Scholar 

  6. Rogach, A.L., Talapin, D.V., Shevchenko, E.V., Kornowski, A., Haase, M., Weller, H.: Organization of matter on different size scales: monodisperse nanocrystals and their superstructures. Adv. Funct. Mater. 12, 653–664 (2002)

    Google Scholar 

  7. Shen, H., Wang, H., Chen, X., Niu, J.Z., Xu, W., Li, X.M., Jiang, X.-D., Du, Z., Li, L.S.: Size- and shape-controlled synthesis of CdTe and PbTe nanocrystals using tellurium dioxide as the tellurium precursor. Chem. Mater. 22, 4756–4761 (2010)

    Google Scholar 

  8. Sun, S., Ting, C.T., Wu, C.I.: The normal function of a speciation gene, Odysseus, and its hybrid sterility effect. Science 305, 81–83 (2004)

    Google Scholar 

  9. Hyeon, T.: Chemical synthesis of magnetic nanoparticles. Chem. Commun. 927–934 (2003)

    Google Scholar 

  10. Park, J., Joo, J., Kwon, S.G., Jang, Y., Hyeon, T.: Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 46, 4630–4660 (2007)

    Google Scholar 

  11. Bai, X., Song, H., Pan, G., Lei, Y., Wang, T., Ren, X., Lu, S., Dong, B., Dai, Q., Fan, L.: Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: saturation and thermal effects. J. Phys. Chem. C 111, 13611–13617 (2007)

    Google Scholar 

  12. Mai, H.-X., Zhang, Y.-W., Sun, L.-D., Yan, C.-H.: Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb, Er core and core/shell-structured nanocrystals. J. Phys. Chem. C 111, 13721–13729 (2007)

    Google Scholar 

  13. Chen, G., Yang, C., Prasad, P.N.: Nanophotonics and nanochemistry: controlling the excitation dynamics for frequency up- and down-conversion in lanthanide-doped nanoparticles. Acc. Chem. Res. 46, 1474–1486 (2013)

    Google Scholar 

  14. Wang, F., Liu, X.: Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 130, 5642–5643 (2008)

    Google Scholar 

  15. Wang, F., Chatterjee, D.K., Li, Z., Zhang, Y., Fan, X., Wang, M.: Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence. Nanotechnology 17, 5786–5791 (2006)

    Google Scholar 

  16. Li, Z., Zhang, Y.: Monodisperse silica-coated polyvinylpyrrolidone/NaYF4 nanocrystals with multicolor upconversion fluorescence emission. Angew. Chem. Int. Ed. 45, 7732–7735 (2006)

    Google Scholar 

  17. Zeng, J.H., Su, J., Li, Z.H., Yan, R.X., Li, Y.D.: Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb, Er3+, phosphors of controlled size and morphology. Adv. Mater. 17, 2119–2123 (2005)

    Google Scholar 

  18. Yi, G.S., Chow, G.M.: Colloidal LaF3:Yb,Er,LaF3:Yb,Ho and LaF3:Yb,Tm nanocrystals with multicolor upconversion fluorescence. J. Mater. Chem. 15, 4460–4464 (2005)

    Google Scholar 

  19. Yi, G.S., Lu, H.C., Zhao, S.Y., Yue, G., Yang, W.J., Chen, D.P., Guo, L.H.: Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb, Er infrared-to-visible up-conversion phosphors. Nano Lett. 4, 2191–2196 (2004)

    Google Scholar 

  20. Heer, S., Kompe, K., Gudel, H.U., Haase, M.: Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 16, 2102–2105 (2004)

    Google Scholar 

  21. Heer, S., Lehmann, O., Haase, M., Gudel, H.U.: Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution. Angew. Chem. Int. Ed. 42, 3179–3182 (2003)

    Google Scholar 

  22. Stouwdam, J.W., van Veggel, F.: Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Lett. 2, 733–737 (2002)

    Google Scholar 

  23. Boyer, J.-C., Cuccia, L.A., Capobianco, J.A.: Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+monodisperse nanocrystals. Nano Lett. 7, 847–852 (2007)

    Google Scholar 

  24. Mai, H.X., Zhang, Y.W., Si, R., Yan, Z.G., Sun, L.D., You, L.P., Yan, C.H.: High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J. Am. Chem. Soc. 128, 6426–6436 (2006)

    Google Scholar 

  25. Boyer, J.C., Vetrone, F., Cuccia, L.A., Capobianco, J.A.: Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc. 128, 7444–7445 (2006)

    Google Scholar 

  26. Zhang, Y.W., Sun, X., Si, R., You, L.P., Yan, C.H.: Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. J. Am. Chem. Soc. 127, 3260–3261 (2005)

    Google Scholar 

  27. Si, R., Zhang, Y.W., You, L.P., Yan, C.H.: Rare-earth oxide nanopolyhedra, nanoplates, and nanodisks. Angew. Chem. Int. Ed. 44, 3256–3260 (2005)

    Google Scholar 

  28. Wang, L., Li, P., Li, Y.: Down- and up-conversion luminescent nanorods. Adv. Mater. 19, 3304–3307 (2007)

    Google Scholar 

  29. Zhang, F., Zhao, D.: Synthesis of uniform rare earth fluoride (NaMF4) nanotubes by in situ ion exchange from their hydroxide [M(OH)3] parents. ACS Nano 3, 159–164 (2009)

    Google Scholar 

  30. Zhang, F., Li, J., Shan, J., Xu, L., Zhao, D.: Shape, size, and phase-controlled rare-earth fluoride nanocrystals with optical up-conversion properties. Chem. Eur. J. 15, 11010–11019 (2009)

    Google Scholar 

  31. Wang, G., Peng, Q., Li, Y.: Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals. J. Am. Chem. Soc. 131, 14200–14201 (2009)

    Google Scholar 

  32. Schaefer, H., Ptacek, P., Eickmeier, H., Haase, M.: Synthesis of hexagonal Yb3+, Er3+-doped NaYF4 nanocrystals at low temperature. Adv. Funct. Mater. 19, 3091–3097 (2009)

    Google Scholar 

  33. Li, Z., Zhang, Y.: An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology 19, 345606 (2008)

    Google Scholar 

  34. Zhang, F., Wan, Y., Yu, T., Zhang, F., Shi, Y., Xie, S., Li, Y., Xu, L., Tu, B., Zhao, D.: Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence. Angew. Chem. Int. Ed. 46, 7976–7979 (2007)

    Google Scholar 

  35. Wang, L., Li, Y.: Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. Chem. Mater. 19, 727–734 (2007)

    Google Scholar 

  36. Wang, L., Li, Y.: Na(Y1.5Na0.5)F6 single-crystal nanorods as multicolor luminescent materials. Nano Lett. 6, 1645–1649 (2006)

    Google Scholar 

  37. Wang, X., Zhuang, J., Peng, Q., Li, Y.D.: A general strategy for nanocrystal synthesis. Nature 437, 121–124 (2005)

    Google Scholar 

  38. Venkatramu, V., Falcomer, D., Speghini, A., Bettinelli, M., Jayasankar, C.K.: Synthesis and luminescence properties of Er3+-doped Lu3Ga5O12 nanocrystals. J. Lumin. 128, 811–813 (2008)

    Google Scholar 

  39. Yang, K., Zheng, F., Wu, R., Li, H., Zhang, X.: Upconversion luminescent properties of YVO4: Yb3+, Er3+ nano-powder by sol-gel method. J. Rare Earths 24, 162–166 (2006)

    Google Scholar 

  40. Patra, A., Friend, C.S., Kapoor, R., Prasad, P.N.: Fluorescence upconversion properties of Er3+-doped TiO2 and BaTiO3 nanocrystallites. Chem. Mater. 15, 3650–3655 (2003)

    Google Scholar 

  41. Patra, A., Friend, C.S., Kapoor, R., Prasad, P.N.: Upconversion in Er3+:ZrO2 nanocrystals. J. Phys. Chem. B 106, 1909–1912 (2002)

    Google Scholar 

  42. Qin, X., Yokomori, T., Ju, Y.: Flame synthesis and characterization of rare-earth (Er3+, Ho3+, and Tm3+) doped upconversion nanophosphors. Appl. Phys. Lett. 90(7), 073104 (2007)

    Google Scholar 

  43. Li, X., Zhang, F., Zhao, D.: Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure. Chem. Soc. Rev. doi:10.1039/C4CS00163J (2014)

  44. Li, X., Zhang, F., Zhao, D.: Highly efficient lanthanide upconverting nanomaterials: progresses and challenges. Nano Today 8, 643–676 (2013)

    Google Scholar 

  45. Wang, G., Peng, Q., Li, Y.: Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications. Acc. Chem. Res. 44, 322–332 (2011)

    Google Scholar 

  46. Haase, M., Schäfer, H.: Upconverting nanoparticles. Angew. Chem. Int. Ed. 50, 5808–5829 (2011)

    Google Scholar 

  47. Wang, F., Liu, X.: Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38, 976–989 (2009)

    Google Scholar 

  48. Zhou, J., Liu, Z., Li, F.: Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 41, 1323–1349 (2012)

    Google Scholar 

  49. Mader, H.S., Kele, P., Saleh, S.M., Wolfbeis, O.S.: Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Curr. Opin. Chem. Biol. 14, 582–596 (2010)

    Google Scholar 

  50. Cheng, L., Wang, C., Liu, Z.: Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale 5, 23–27 (2013)

    Google Scholar 

  51. Chatterjee, D.K., Gnanasammandhan, M.K., Zhang, Y.: Small upconverting fluorescent nanoparticles for biomedical applications. Small 6, 2781–2795 (2010)

    Google Scholar 

  52. Auzel, F.: Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104, 139–173 (2004)

    Google Scholar 

  53. Fischer, L.H., Harms, G.S., Wolfbeis, O.S.: Upconverting nanoparticles for nanoscale thermometry. Angew. Chem. Int. Ed. 50, 4546–4551 (2011)

    Google Scholar 

  54. Chen, G., Qju, H., Prasad, P.N., Chen, X.: Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114, 5161–5214 (2014)

    Google Scholar 

  55. Sun, X., Zhang, Y.-W., Du, Y.-P., Yan, Z.-G., Si, R., You, L.-P., Yan, C.-H.: From trifluoroacetate complex precursors to monodisperse rare-earth fluoride and oxyfluoride nanocrystals with diverse shapes through controlled fluorination in solution phase. Chem. Eur. J. 13, 2320–2332 (2007)

    Google Scholar 

  56. Johnson, N.J.J., Korinek, A., Dong, C., van Veggel, F.C.J.M.: Self-focusing by Ostwald ripening: a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals. J. Am. Chem. Soc. 134, 11068–11071 (2012)

    Google Scholar 

  57. Li, Z., Zhang, Y., Jiang, S.: Multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv. Mater. 20, 4765–4769 (2008)

    Google Scholar 

  58. Qian, H.-S., Zhang, Y.: Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence. Langmuir 24, 12123–12125 (2008)

    Google Scholar 

  59. Zheng, W., Zhou, S., Chen, Z., Hu, P., Liu, Y., Tu, D., Zhu, H., Li, R., Huang, M., Chen, X.: Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection. Angew. Chem. Int. Ed. 52, 6671–6676 (2013)

    Google Scholar 

  60. Lamer, V.K., Dinegar, R.H.: Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 72, 4847–4854 (1950)

    Google Scholar 

  61. Murray, C.B., Kagan, C., Bawendi, M.: Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000)

    Google Scholar 

  62. Peng, Z.A., Peng, X.G.: Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J. Am. Chem. Soc. 124, 3343–3353 (2002)

    Google Scholar 

  63. Peng, X.G., Wickham, J., Alivisatos, A.P.: Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J. Am. Chem. Soc. 120, 5343–5344 (1998)

    Google Scholar 

  64. Vossmeyer, T., Katsikas, L., Giersig, M., Popovic, I.G., Diesner, K., Chemseddine, A., Eychmuller, A., Weller, H.: CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J. Phys. Chem. 98, 7665–7673 (1994)

    Google Scholar 

  65. Spanhel, L., Anderson, M.A.: Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. J. Am. Chem. Soc. 113, 2826–2833 (1991)

    Google Scholar 

  66. Alivisatos, A.P.: Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226–13239 (1996)

    Google Scholar 

  67. Zhang, H.Z., Banfield, J.F.: Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J. Phys. Chem. B 104, 3481–3487 (2000)

    Google Scholar 

  68. Murray, C.B., Norris, D.J., Bawendi, M.G.: Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993)

    Google Scholar 

  69. Jana, N.R., Gearheart, L., Murphy, C.J.: Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem. Mater. 13, 2313–2322 (2001)

    Google Scholar 

  70. Yu, H., Gibbons, P.C., Kelton, K.F., Buhro, W.E.: Heterogeneous seeded growth: a potentially general synthesis of monodisperse metallic nanoparticles. J. Am. Chem. Soc. 123, 9198–9199 (2001)

    Google Scholar 

  71. Wilcoxon, J.P., Provencio, P.P.: Heterogeneous growth of metal clusters from solutions of seed nanoparticles. J. Am. Chem. Soc. 126, 6402–6408 (2004)

    Google Scholar 

  72. Park, J., Lee, E., Hwang, N.M., Kang, M.S., Kim, S.C., Hwang, Y., Park, J.G., Noh, H.J., Kini, J.Y., Park, J.H., Hyeon, T.: One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew. Chem. Int. Ed. 44, 2872–2877 (2005)

    Google Scholar 

  73. Talapin, D.V., Rogach, A.L., Kornowski, A., Haase, M., Weller, H.: Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett. 1, 207–211 (2001)

    Google Scholar 

  74. Hambrock, J., Becker, R., Birkner, A., Weiss, J., Fischer, R.A.: A non-aqueous organometallic route to highly monodispersed copper nanoparticles using [Cu(OCH(Me)CH2NMe2)2]. Chem. Commun. 68–69 (2002)

    Google Scholar 

  75. Jana, N.R., Peng, X.G.: Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. J. Am. Chem. Soc. 125, 14280–14281 (2003)

    Google Scholar 

  76. Park, J., An, K.J., Hwang, Y.S., Park, J.G., Noh, H.J., Kim, J.Y., Park, J.H., Hwang, N.M., Hyeon, T.: Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891–895 (2004)

    Google Scholar 

  77. Seo, W.S., Jo, H.H., Lee, K., Park, J.T.: Preparation and optical properties of highly crystalline, colloidal, and size-controlled indium oxide nanoparticles. Adv. Mater. 15, 795–797 (2003)

    Google Scholar 

  78. Yu, W.W., Falkner, J.C., Yavuz, C.T., Colvin, V.L.: Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem. Commun. 2306–2307 (2004)

    Google Scholar 

  79. Joo, J., Na, H.B., Yu, T., Yu, J.H., Kim, Y.W., Wu, F.X., Zhang, J.Z., Hyeon, T.: Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. J. Am. Chem. Soc. 125, 11100–11105 (2003)

    Google Scholar 

  80. Yi, G.-S., Chow, G.-M.: Water-soluble NaYF4:Yb, Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater. 19, 341–434 (2007)

    Google Scholar 

  81. Reiss, H.: The growth of uniform colloidal dispersions. J. Chem. Phys. 19, 482–487 (1951)

    Google Scholar 

  82. Talapin, D.V., Rogach, A.L., Haase, M., Weller, H.: Evolution of an ensemble of nanoparticles in a colloidal solution: theoretical study. J. Phys. Chem. B 105, 12278–12285 (2001)

    Google Scholar 

  83. Talapin, D.V., Rogach, A.L., Shevchenko, E.V., Kornowski, A., Haase, M., Weller, H.: Dynamic distribution of growth rates within the ensembles of colloidal II-VI and III-V semiconductor nanocrystals as a factor governing their photoluminescence efficiency. J. Am. Chem. Soc. 124, 5782–5790 (2002)

    Google Scholar 

  84. Chen, G., Shen, J., Ohulchanskyy, T.Y., Patel, N.J., Kutikov, A., Li, Z., Song, J., Pandey, R.K., Agren, H., Prasad, P.N., Han, G.: (alpha-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 6, 8280–8287 (2012)

    Google Scholar 

  85. Zhan, Q., Qian, J., Liang, H., Somesfalean, G., Wang, D., He, S., Zhang, Z., Andersson-Engels, S.: Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation. ACS Nano 5, 3744–3757 (2011)

    Google Scholar 

  86. Chen, G., Ohulchanskyy, T.Y., Liu, S., Law, W.-C., Wu, F., Swihart, M.T., Agren, H., Prasad, P.N.: Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications. ACS Nano 6, 2969–2977 (2012)

    Google Scholar 

  87. Vetrone, F., Naccache, R., Mahalingam, V., Morgan, C.G., Capobianco, J.A.: The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv. Funct. Mater. 19, 2924–2929 (2009)

    Google Scholar 

  88. Naccache, R., Vetrone, F., Mahalingam, V., Cuccia, L.A., Capobianco, J.A.: Controlled synthesis and water dispersibility of hexagonal phase NaGdF4:Ho3+/Yb3+ nanoparticles. Chem. Mater. 21, 717–723 (2009)

    Google Scholar 

  89. Abel, K.A., Boyer, J.-C., van Veggel, F.C.J.M.: Hard proof of the NaYF4/NaGdF4 nanocrystal core/shell structure. J. Am. Chem. Soc. 131, 14644–14645 (2009)

    Google Scholar 

  90. Ye, X., Collins, J.E., Kang, Y., Chen, J., Chen, D.T.N., Yodh, A.G., Murray, C.B.: Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly. Proc. Natl. Acad. Sci. 107, 22430–22435 (2010)

    Google Scholar 

  91. Komban, R., Klare, J.P., Voss, B., Nordmann, J., Steinhoff, H.-J., Haase, M.: An electron paramagnetic resonance spectroscopic investigation on the growth mechanism of NaYF4:Gd nanocrystals. Angew. Chem. Int. Ed. 51, 6506–6510 (2012)

    Google Scholar 

  92. Mahalingam, V., Vetrone, F., Naccache, R., Speghini, A., Capobianco, J.A.: Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: multiple luminescence spanning the UV to NIR regions via low-energy excitation. Adv. Mater. 21, 4025–4028 (2009)

    Google Scholar 

  93. Wang, J., Wang, F., Xu, J., Wang, Y., Liu, Y., Chen, X., Chen, H., Liu, X.: Lanthanide-doped LiYF4 nanoparticles: synthesis and multicolor upconversion tuning. C. R. Chim. 13, 731–736 (2010)

    Google Scholar 

  94. Chen, G., Ohulchanskyy, T.Y., Kachynski, A., Agren, H., Prasad, P.N.: Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4:Er3+ nanocrystals under excitation at 1490 nm. ACS Nano 5, 4981–4986 (2011)

    Google Scholar 

  95. Zhou, H.-P., Zhang, Y.-W., Mai, H.-X., Sun, X., Liu, Q., Song, W.-G., Yan, C.-H.: Spontaneous organization of uniform CeO2 nanoflowers by 3D oriented attachment in hot surfactant solutions monitored with an in situ electrical conductance technique. Chem. Eur. J. 14, 3380–3390 (2008)

    Google Scholar 

  96. Qiu, H., Chen, G., Fan, R., Cheng, C., Hao, S., Chen, D., Yang, C.: Tuning the size and shape of colloidal cerium oxide nanocrystals through lanthanide doping. Chem. Commun. 47, 9648–9650 (2011)

    Google Scholar 

  97. Chen, G., Qiu, H., Fan, R., Hao, S., Tan, S., Yang, C., Han, G.: Lanthanide-doped ultrasmall yttrium fluoride nanoparticles with enhanced multicolor upconversion photoluminescence. J. Mater. Chem. 22, 20190–20196 (2012)

    Google Scholar 

  98. Du, Y.P., Sun, X., Zhang, Y.W., Yan, Z.G., Sun, L.D., Yan, C.H.: Uniform alkaline earth fluoride nanocrystals with diverse shapes grown from thermolysis of metal trifluoroacetates in hot surfactant solutions. Cryst. Growth Des. 9, 2013–2019 (2009)

    Google Scholar 

  99. Teng, X., Zhu, Y., Wei, W., Wang, S., Huang, J., Naccache, R., Hu, W., Tok, A.I.Y., Han, Y., Zhang, Q., Fan, Q., Huang, W., Capobianco, J.A., Huang, L.: Lanthanide-doped NaxScF3+x nanocrystals: crystal structure evolution and multicolor tuning. J. Am. Chem. Soc. 134, 8340–8343 (2012)

    Google Scholar 

  100. Yi, G.S., Chow, G.M.: Synthesis of hexagonal-phase NaYF4:Yb, Er and NaYF4:Yb, Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater. 16, 2324–2329 (2006)

    Google Scholar 

  101. Du, Y.-P., Zhang, Y.-W., Sun, L.-D., Yan, C.-H.: Luminescent monodisperse nanocrystals of lanthanide oxyfluorides synthesized from trifluoroacetate precursors in high-boiling solvents. J. Phys. Chem. C 112, 405–415 (2008)

    Google Scholar 

  102. Du, Y.-P., Zhang, Y.-W., Sun, L.-D., Yan, C.-H.: Atomically efficient synthesis of self-assembled monodisperse and ultrathin lanthanide oxychloride nanoplates. J. Am. Chem. Soc. 131, 3162–3163 (2009)

    Google Scholar 

  103. Niu, W., Wu, S., Zhang, S.: Utilizing the amidation reaction to address the “cooperative effect” of carboxylic acid/amine on the size, shape, and multicolor output of fluoride upconversion nanoparticles. J. Mater. Chem. 21, 10894–10902 (2011)

    Google Scholar 

  104. Chen, G., Ohulchanskyy, T.Y., Kumar, R., Agren, H., Prasad, P.N.: Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. ACS Nano 4, 3163–3168 (2010)

    Google Scholar 

  105. Si, R., Zhang, Y.-W., Zhou, H.-P., Sun, L.-D., Yan, C.-H.: Controlled-synthesis, self-assembly behavior, and surface-dependent optical properties of high-quality rare-earth oxide nanocrystals. Chem. Mater. 19, 18–27 (2007)

    Google Scholar 

  106. Cao, Y.C.: Synthesis of square gadolinium-oxide nanoplates. J. Am. Chem. Soc. 126, 7456–7457 (2004)

    Google Scholar 

  107. Zhao, F., Yuan, M., Zhang, W., Gao, S.: Monodisperse lanthanide oxysulfide nanocrystals. J. Am. Chem. Soc. 128, 11758–11759 (2006)

    Google Scholar 

  108. Ding, Y., Gu, J., Ke, J., Zhang, Y.-W., Yan, C.-H.: Sodium doping controlled synthesis of monodisperse lanthanide oxysulfide ultrathin nanoplates guided by density functional calculations. Angew. Chem. Int. Ed. 50, 12330–12334 (2011)

    Google Scholar 

  109. Ding, Y., Gu, J., Zhang, T., Yin, A.-X., Yang, L., Zhang, Y.-W., Yan, C.-H.: Chemoaffinity-mediated synthesis of NaRES2-based nanocrystals as versatile nano-building blocks and durable nano-pigments. J. Am. Chem. Soc. 134, 3255–3264 (2012)

    Google Scholar 

  110. Wang, F., Sun, L.-D., Gu, J., Wang, Y.-F., Feng, W., Yang, Y., Wang, J., Yan, C.-H.: Selective heteroepitaxial nanocrystal growth of rare earth fluorides on sodium chloride: synthesis and density functional calculations. Angew. Chem. Int. Ed. 51, 8796–8799 (2012)

    Google Scholar 

  111. Zhou, H.-P., Zhang, C., Yan, C.-H.: Controllable assembly of diverse rare-earth nanocrystals via the langmuir-blodgett technique and the underlying size- and symmetry-dependent assembly kinetics. Langmuir 25, 12914–12925 (2009)

    Google Scholar 

  112. Wang, H.Z., Uehara, M., Nakamura, H., Miyazaki, M., Maeda, H.: Synthesis of well-dispersed Y2O3:Eu nanocrystals and self-assembled nanodisks using a simple non-hydrolytic route. Adv. Mater. 17, 2506–2509 (2005)

    Google Scholar 

  113. Shan, J., Qin, X., Yao, N., Ju, Y.: Synthesis of monodisperse hexagonal NaYF4 : Yb, Ln (Ln = Er, Ho and Tm) upconversion nanocrystals in TOPO. Nanotechnology 18 (2007)

    Google Scholar 

  114. Shan, J., Kong, W., Wei, R., Yao, N., Ju, Y.: An investigation of the thermal sensitivity and stability of the beta-NaYF4:Yb, Er upconversion nanophosphors. J. Appl. Phys. 107 (2010)

    Google Scholar 

  115. Shan, J., Ju, Y.: Controlled synthesis of lanthanide-doped NaYF4 upconversion nanocrystals via ligand induced crystal phase transition and silica coating. Appl. Phys. Lett. 91 (2007)

    Google Scholar 

  116. He, M., Huang, P., Zhang, C., Chen, F., Wang, C., Ma, J., He, R., Cui, D.: A general strategy for the synthesis of upconversion rare earth fluoride nanocrystals via a novel OA/ionic liquid two-phase system. Chem. Commun. 47, 9510–9512 (2011)

    Google Scholar 

  117. Li, P., Peng, Q., Li, Y.: Dual-mode luminescent colloidal spheres from monodisperse rare-earth fluoride nanocrystals. Adv. Mater. 21, 1945–1948 (2009)

    Google Scholar 

  118. Chen, D., Huang, P., Yu, Y., Huang, F., Yang, A., Wang, Y.: Dopant-induced phase transition: a new strategy of synthesizing hexagonal upconversion NaYF4 at low temperature. Chem. Commun. 47, 5801–5803 (2011)

    Google Scholar 

  119. Chen, Z., Chen, H., Hu, H., Yu, M., Li, F., Zhang, Q., Zhou, Z., Yi, T., Huang, C.: Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. J. Am. Chem. Soc. 130, 3023–3029 (2008)

    Google Scholar 

  120. Nguyen, T.-D., Dinh, C.-T., Do, T.-O.: Shape- and size-controlled synthesis of monoclinic ErOOH and cubic Er2O3 from micro- to nanostructures and their upconversion luminescence. ACS Nano 4, 2263–2273 (2010)

    Google Scholar 

  121. Qiu, H., Chen, G., Sun, L., Hao, S., Han, G., Yang, C.: Ethylenediaminetetraacetic acid (EDTA)-controlled synthesis of multicolor lanthanide doped BaYF5 upconversion nanocrystals. J. Mater. Chem. 21, 17202–17208 (2011)

    Google Scholar 

  122. Yang, S., Gao, L.: Controlled synthesis and self-assembly of CeO2 nanocubes. J. Am. Chem. Soc. 128, 9330–9331 (2006)

    Google Scholar 

  123. Chen, D., Yu, Y., Huang, F., Huang, P., Yang, A., Wang, Y.: Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping. J. Am. Chem. Soc. 132, 9976–9978 (2010)

    Google Scholar 

  124. Zhu, X., Zhang, Q., Li, Y., Wang, H.: Redispersible and water-soluble LaF3:Ce, Tb nanocrystals via a microfluidic reactor with temperature steps. J. Mater. Chem. 18, 5060–5062 (2008)

    Google Scholar 

  125. Li, S., Xie, T., Peng, Q., Li, Y.: Nucleation and growth of CeF3 and NaCeF4 nanocrystals. Chem. Eur. J. 15, 2512–2517 (2009)

    Google Scholar 

  126. Chen, D., Yu, Y., Huanga, F., Wang, Y.: Phase transition from hexagonal LnF3 (Ln = La, Ce, Pr) to cubic Ln0.8M0.2F2.8 (M = Ca, Sr, Ba) nanocrystals with enhanced upconversion induced by alkaline-earth doping. Chem. Commun. 47, 2601–2603 (2011)

    Google Scholar 

  127. Chen, D., Lei, L., Zhang, R., Yang, A., Xu, J., Wang, Y.: Intrinsic single-band upconversion emission in colloidal Yb/Er(Tm):Na3Zr(Hf)F7 nanocrystals. Chem. Commun. 48, 10630–10632 (2012)

    Google Scholar 

  128. Wang, G., Peng, Q., Li, Y.: Synthesis and upconversion luminescence of BaY2F8:Yb3+/Er3+ nanobelts. Chem. Commun. 46, 7528–7529 (2010)

    Google Scholar 

  129. Schaefer, H., Ptacek, P., Zerzouf, O., Haase, M.: Synthesis and optical properties of KYF4/Yb, Er nanocrystals, and their surface modification with undoped KYF4. Adv. Funct. Mater. 18, 2913–2918 (2008)

    Google Scholar 

  130. Shi, F., Wang, J., Zhai, X., Zhao, D., Qin, W.: Facile synthesis of beta-NaLuF4:Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence. CrystEngComm 13, 3782–3787 (2011)

    Google Scholar 

  131. Peng, Y., Xing, M.-M., Luo, X.-X., Wang, L.-Q.: Synthesis and characteristic research of nanoparticles KY3F10:Yb, RE (RE = Er, Ho, Tm) by thermal decomposition. Acta Phys. Sin-Ch. Ed. 61 (2012)

    Google Scholar 

  132. Vetrone, F., Mahalingam, V., Capobianco, J.A.: Near-infrared-to-blue upconversion in colloidal BaYF5:Tm3+, Yb3+ nanocrystals. Chem. Mater. 21, 1847–1851 (2009)

    Google Scholar 

  133. Wang, Y.-F., Sun, L.-D., Xiao, J.-W., Feng, W., Zhou, J.-C., Shen, J., Yan, C.-H.: Rare-earth nanoparticles with enhanced upconversion emission and suppressed rare-earth-ion leakage. Chem. Eur. J. 18, 5558–5564 (2012)

    Google Scholar 

  134. Byrappa, K., Adschiri, T.: Hydrothermal technology for nanotechnology. Prog. Cryst. Growth Ch 53, 117–166 (2007)

    Google Scholar 

  135. Haes, A.J., Van Duyne, R.P.: A nanoscale optical blosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 124, 10596–10604 (2002)

    Google Scholar 

  136. Wang, L., Qin, W., Liu, Z., Zhao, D., Qin, G., Di, W., He, C.: Improved 800 nm emission of Tm3+ sensitized by Yb3+ and Ho3+ in beta-NaYF4 nanocrystals under 980 nm excitation. Opt. Express 20, 7602–7607 (2012)

    Google Scholar 

  137. Jiang, W., Kim, B.Y.S., Rutka, J.T., Chan, W.C.W.: Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145–150 (2008)

    Google Scholar 

  138. Shaner, N.C., Steinbach, P.A., Tsien, R.Y.: A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005)

    Google Scholar 

  139. Yang, D., Kang, X., Shang, M., Li, G., Peng, C., Li, C., Lin, J.: Size and shape controllable synthesis and luminescent properties of BaGdF5: Ce3+/Ln3+ (Ln = Sm, Dy, Eu, Tb) nano/submicrocrystals by a facile hydrothermal process. Nanoscale 3, 2589–2595 (2011)

    Google Scholar 

  140. Liu, Z.-J., Song, X.-X., Tang, Q.: Development of PEGylated KMnF3 nanoparticles as a T-1-weighted contrast agent: chemical synthesis, in vivo brain MR imaging, and accounting for high relaxivity. Nanoscale 5, 5073–5079 (2013)

    Google Scholar 

  141. Yan, R.X., Li, Y.D.: Down/up conversion in Ln3+-doped YF3 nanocrystals. Adv. Funct. Mater. 15, 763–770 (2005)

    Google Scholar 

  142. Lemyre, J.L., Ritcey, A.M.: Synthesis of lanthanide fluoride nanoparticles of varying shape and size. Chem. Mater. 17, 3040–3043 (2005)

    Google Scholar 

  143. Li, C., Yang, J., Yang, P., Lian, H., Lin, J.: Hydrothermal synthesis of lanthanide fluorides LnF3 (Ln = La to Lu) nano-/microcrystals with multiform structures and morphologies. Chem. Mater. 20, 4317–4326 (2008)

    Google Scholar 

  144. Fu, Z., Zheng, H., He, E., Gao, W., Li, G.: Enhancement of red emission by co-dopant Ln3+ ions in Eu3+:LaOF nanoparticles. Sci. China Phys. Mech. Astron. 56, 928–932 (2013)

    Google Scholar 

  145. Wang, F., Han, Y., Lim, C.S., Lu, Y., Wang, J., Xu, J., Chen, H., Zhang, C., Hong, M., Liu, X.: Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010)

    Google Scholar 

  146. Liu, Q., Sun, Y., Yang, T., Feng, W., Li, C., Li, F.: Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J. Am. Chem. Soc. 133, 17122–17125 (2011)

    Google Scholar 

  147. Li, C., Quan, Z., Yang, P., Yang, J., Lian, H., Lin, J.: Shape controllable synthesis and upconversion properties of NaYbF4/NaYbF4:Er3+ and YbF3/YbF3:Er3+ microstructures. J. Mater. Chem. 18, 1353–1361 (2008)

    Google Scholar 

  148. Ostrowski, A.D., Chan, E.M., Gargas, D.J., Katz, E.M., Han, G., Schuck, P.J., Milliron, D.J., Cohen, B.E.: Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals. ACS Nano 6, 2686–2692 (2012)

    Google Scholar 

  149. Johnson, N.J.J., Oakden, W., Stanisz, G.J., Prosser, R.S., van Veggel, F.C.J.M.: Size-tunable, ultrasmall NaGdF4 nanoparticles: insights into their T1 MRI contrast enhancement. Chem. Mater. 23, 3714–3722 (2011)

    Google Scholar 

  150. Zheng, W., Zhou, S., Chen, Z., Hu, P., Liu, Y., Tu, D., Zhu, H., Li, R., Huang, M., Chen, X.: Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection. Angew. Chem. Int. Ed. 52, 6671–6676 (2013)

    Google Scholar 

  151. Chen, D., Yu, Y., Huang, F., Lin, H., Huang, P., Yang, A., Wang, Z., Wang, Y.: Lanthanide dopant-induced formation of uniform sub-10 nm active-core/active-shell nanocrystals with near-infrared to near-infrared dual-modal luminescence. J. Mater. Chem. 22, 2632–2640 (2012)

    Google Scholar 

  152. Xu, L., Yu, Y., Li, X., Somesfalean, G., Zhang, Y., Gao, H., Zhang, Z.: Synthesis and upconversion properties of monoclinic Gd2O3:Er3+ nanocrystals. Opt. Mater. 30, 1284–1288 (2008)

    Google Scholar 

  153. X-x, Luo, W-h, Cao: Ethanol-assistant solution combustion method to prepare La2O2S:Yb, Pr nanometer phosphor. J. Alloy. Compd. 460, 529–534 (2008)

    Google Scholar 

  154. Vetrone, F., Boyer, J.C., Capobianco, J.A., Speghini, A., Bettinelli, M.: Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+ nanocrystals. J. Appl. Phys. 96, 661–667 (2004)

    Google Scholar 

  155. Boyer, J.-C., van Veggel, F.C.J.M.: Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2, 1417–1419 (2010)

    Google Scholar 

  156. Sarkar, S., Meesaragandla, B., Hazra, C., Mahalingam, V.: Sub-5 nm Ln3+-doped BaLuF5 nanocrystals: a platform to realize upconversion via interparticle energy transfer (IPET). Adv. Mater. 25, 856–860 (2013)

    Google Scholar 

  157. Wong, H.-T., Vetrone, F., Naccache, R., Chan, H.L.W., Hao, J., Capobianco, J.A.: Water dispersible ultra-small multifunctional KGdF4:Tm3+, Yb3+ nanoparticles with near-infrared to near-infrared upconversion. J. Mater. Chem. 21, 16589–16596 (2011)

    Google Scholar 

  158. Wang, F., Deng, R., Wang, J., Wang, Q., Han, Y., Zhu, H., Chen, X., Liu, X.: Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater. 10, 968–973 (2011)

    Google Scholar 

  159. Zhang, F., Che, R., Li, X., Yao, C., Yang, J., Shen, D., Hu, P., Li, W., Zhao, D.: Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties. Nano Lett. 12, 2852–2858 (2012)

    Google Scholar 

  160. Wang, F., Wang, J., Liu, X.: Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew. Chem. Int. Ed. 49, 7456–7460 (2010)

    Google Scholar 

  161. Abel, K.A., Boyer, J.-C., Andrei, C.M., van Veggel, F.C.J.M.: Analysis of the shell thickness distribution on NaYF4/NaGdF4 core/shell nanocrystals by EELS and EDS. J. Phys. Chem. L. 2, 185–189 (2011)

    Google Scholar 

  162. Li, X., Wang, R., Zhang, F., Zhou, L., Shen, D., Yao, C., Zhao, D.: Nd3+ sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800 nm. Sci. Rep. 3, 3536 (2013)

    Google Scholar 

  163. Huang, P., Zheng, W., Zhou, S., Tu, D., Chen, Z., Zhu, H., Li, R., Ma, E., Huang, M., Chen, X.: Lanthanide-doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers. Angew. Chem. Int. Ed. 53, 1252–1257 (2014)

    Google Scholar 

  164. Li, X., Shen, D., Yang, J., Yao, C., Che, R., Zhang, F., Zhao, D.: Successive layer-by-layer strategy for multi-shell epitaxial growth: shell thickness and doping position dependence in upconverting optical properties. Chem. Mater. 25, 106–112 (2013)

    Google Scholar 

  165. Dong, C., Korinek, A., Blasiak, B., Tomanek, B., van Veggel, F.C.J.M.: Cation exchange: a facile method to make NaYF4:Yb, Tm-NaGdF4 core-shell nanoparticles with a thin, tunable, and uniform shell. Chem. Mater. 24, 1297–1305 (2012)

    Google Scholar 

  166. Li, X., Wang, R., Zhang, F., Zhao, D.: Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency. Nano Lett. 14, 3634–3639 (2014)

    Google Scholar 

  167. Li, J.J., Wang, Y.A., Guo, W.Z., Keay, J.C., Mishima, T.D., Johnson, M.B., Peng, X.G.: Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 125, 12567–12575 (2003)

    Google Scholar 

  168. Dong, C., van Veggel, F.C.J.M.: Cation exchange in lanthanide fluoride nanoparticles. ACS Nano 3, 123–130 (2009)

    Google Scholar 

  169. Liu, Q., Sun, Y., Li, C., Zhou, J., Li, C., Yang, T., Zhang, X., Yi, T., Wu, D., Li, F.: F-18-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly. ACS Nano 5, 3146–3157 (2011)

    Google Scholar 

  170. Xu, C.T., Svenmarker, P., Liu, H., Wu, X., Messing, M.E., Wallenberg, L.R., Andersson-Engels, S.: High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles. ACS Nano 6, 4788–4795 (2012)

    Google Scholar 

  171. Wen, H., Zhu, H., Chen, X., Hung, T.F., Wang, B., Zhu, G., Yu, S.F., Wang, F.: Upconverting near-infrared light through energy management in core-shell-shell nanoparticles. Angew. Chem. Int. Ed. 125, 13661–13665 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, F. (2015). “Wet” Chemical Synthesis and Manipulation of Upconversion Nanoparticles. In: Photon Upconversion Nanomaterials. Nanostructure Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45597-5_2

Download citation

Publish with us

Policies and ethics