Skip to main content

Upconversion Nanoparticles for Other Applications

  • Chapter
  • First Online:

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Besides various bio-applications such as biomedicine, bioassay, photon dynamic treatment, and drug delivery, UCNPs have also been used in other applications. They can be explored as a NIR absorber in solar cells because they can absorb NIR light which has been wasted in traditional solar cells. They can be used as sensitizer in photocatalysis due to the energy transfer from UCNPs to the quantum dots or organic dyes. They are considered as next generation anti-counterfeiting materials due to their unique optical properties. In this chapter, the recent progress on other applications (besides bio-application) based on UCNPs is reviewed.

Rui Wang and Fan Zhang contributed together to this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mader, H.S., Kele, P., Saleh, S.M., Wolfbeis, O.S.: Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Curr. Opin. Chem. Biol. 14, 582–596 (2010)

    Article  Google Scholar 

  2. Haase, M., Schafer, H.: Upconverting nanoparticles. Angew. Chem. Int. Ed. 50, 5808–5829 (2011)

    Article  Google Scholar 

  3. Wang, F., Liu, X.G.: Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38, 976–989 (2009)

    Article  Google Scholar 

  4. Halme, J., Vahermaa, P., Miettunen, K., Lund, P.: Device physics of dye solar cells. Adv. Mater. 22, E210–E234 (2010)

    Article  Google Scholar 

  5. Hagfeldt, A., Boschloo, G., Sun, L.C., Kloo, L., Pettersson, H.: Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010)

    Article  Google Scholar 

  6. Hoppe, H., Sariciftci, N.S.: Organic solar cells: an overview. J. Mater. Res. 19, 1924–1945 (2004)

    Article  Google Scholar 

  7. Kamat, P.V.: Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. Cells 112, 18737–18753 (2008)

    Google Scholar 

  8. Goetzberger, A., Luther, J., Willeke, G.: Solar cells: past, present, future. Sol. Energ. Mater. Sol. Cells 74, 1–11 (2002)

    Article  Google Scholar 

  9. Chapin, D.M., Fuller, C.S., Pearson, G.L.: A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25, 676–677 (1954)

    Article  Google Scholar 

  10. Goetzberger, A., Hebling, C., Schock, H.W.: Photovoltaic materials, history, status and outlook. Mater. Sci. Eng. R 40, 1–46 (2003)

    Article  Google Scholar 

  11. Wang, H.Q., Batentschuk, M., Osvet, A., Pinna, L., Brabec, C.J.: Rare-earth ion doped up-conversion materials for photovoltaic applications. Adv. Mater. 23, 2675–2680 (2011)

    Article  Google Scholar 

  12. Li, X.M., Zhang, F., Zhao, D.Y.: Highly efficient lanthanide upconverting nanomaterials: progresses and challenges. Nano Today 8, 643–676 (2013)

    Article  Google Scholar 

  13. Richards, B.S.: Luminescent layers for enhanced silicon solar cell performance: down-conversion. Sol. Energy Mater. Sol. Cells 90, 1189–1207 (2006)

    Article  Google Scholar 

  14. Trupke, T., Green, M.A., Wurfel, P.: Improving solar cell efficiencies by down-conversion of high-energy photons. J. Appl. Phys. 92, 1668–1674 (2002)

    Article  Google Scholar 

  15. Klampaftis, E., Ross, D., McIntosh, K.R., Richards, B.S.: Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review. Sol. Energy Mater. Sol. Cells 93, 1182–1194 (2009)

    Article  Google Scholar 

  16. Wegh, R.T., Donker, H., Oskam, K.D., Meijerink, A.: Visible quantum cutting in LiGdF4: Eu3+ through downconversion. Science 283, 663–666 (1999)

    Article  Google Scholar 

  17. Struempel, C., McCann, M., Beaucarne, G., Arkhipov, V., Slaoui, A., Svrcek, V., del Canizo, C., Tobias, I.: Modifying the solar spectrum to enhance silicon solar cell efficiency–an overview of available materials. Sol. Energy Mater. Sol. Cells 91, 238–249 (2007)

    Article  Google Scholar 

  18. Shalav, A., Richards, B.S., Green, M.A.: Luminescent layers for enhanced silicon solar cell performance: up-conversion. Sol. Energy Mater. Sol. Cells 91, 829–842 (2007)

    Article  Google Scholar 

  19. Imenes, A.G., Mills, D.R.: Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review. Sol. Energy Mater. Sol. Cells 84, 19–69 (2004)

    Article  Google Scholar 

  20. Wolf, M.: Limitations and possibilities for improvement of photovoltaic solar energy converters .1. considerations for earths surface operation. Proceedings of the Institute of Radio Engineers 48, 1246–1263 (1960)

    Google Scholar 

  21. Barnham, K.W.J., Duggan, G.: A new approach to high-efficiency multi-band-gap solar-cells. J. Appl. Phys. 67, 3490–3493 (1990)

    Article  Google Scholar 

  22. Keevers, M.J., Green, M.A.: Efficiency improvements of silicon solar-cells by the impurity photovoltaic effect. J. Appl. Phys. 75, 4022–4031 (1994)

    Article  Google Scholar 

  23. Shan, G.B., Demopoulos, G.P.: Near-infrared sunlight harvesting in dye-sensitized solar cells via the insertion of an upconverter-TiO2 nanocomposite layer. Adv. Mater. 22, 4373–4377 (2010)

    Article  Google Scholar 

  24. Su, L.T., Karuturi, S.K., Luo, J.S., Liu, L.J., Liu, X.F., Guo, J., Sum, T.C., Deng, R.R., Fan, H.J., Liu, X.G., Tok, A.I.Y.: Photon upconversion in hetero-nanostructured photoanodes for enhanced near-infrared light harvesting. Adv. Mater. 25, 1603–1607 (2013)

    Article  Google Scholar 

  25. Gibart, P., Auzel, F., Guillaume, J.C., Zahraman, K.: Below band-gap IR response of substrate-free GaAs solar cells using two-photon up-conversion. Jpn. J Appl. Phys. Part 1-Regul. Pap. Short Notes Rev. Pap. 35, 4401–4402 (1996)

    Google Scholar 

  26. Richards, B.S., Shalav, A.: Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion. IEEE. T. Electron Dev. 54, 2679–2684 (2007)

    Article  Google Scholar 

  27. Shalav, A., Richards, B.S., Trupke, T., Kramer, K.W., Gudel, H.U.: Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response. Appl. Phys. Lett. 86, 013505 (2005)

    Article  Google Scholar 

  28. Chen, D.Q., Lei, L., Yang, A.P., Wang, Z.X., Wang, Y.S.: Ultra-broadband near-infrared excitable upconversion core/shell nanocrystals. Chem. Commun. 48, 5898–5900 (2012)

    Article  Google Scholar 

  29. Li, Z.Q., Li, X.D., Liu, Q.Q., Chen, X.H., Sun, Z., Liu, C., Ye, X.J., Huang, S.M.: Core/shell structured NaYF4:Yb3+/Er3+/Gd+3 nanorods with Au nanoparticles or shells for flexible amorphous silicon solar cells. Nanotechnology 23, 025402 (2012)

    Article  Google Scholar 

  30. Trupke, T., Shalav, A., Richards, B.S., Wurfel, P., Green, M.A.: Efficiency enhancement of solar cells by luminescent up-conversion of sunlight. Sol. Energy Mater. Sol. Cells 90, 3327–3338 (2006)

    Article  Google Scholar 

  31. de Wild, J., Rath, J.K., Meijerink, A., van Sark, W., Schropp, R.E.I.: Enhanced near-infrared response of a-Si:H solar cells with beta-NaYF4:Yb3+(18 %), Er3+(2 %) upconversion phosphors. Sol. Energy Mater. Sol. Cells 94, 2395–2398 (2010)

    Article  Google Scholar 

  32. de Wild, J., Meijerink, A., Rath, J.K., van Sark, W., Schropp, R.E.I.: Towards upconversion for amorphous silicon solar cells. Sol. Energy Mater. Sol. Cells 94, 1919–1922 (2010)

    Article  Google Scholar 

  33. Li, Y., Wang, G.F., Pan, K., Jiang, B.J., Tian, C.G., Zhou, W., Fu, H.G.: NaYF4:Er3+/Yb3+-graphene composites: preparation, upconversion luminescence, and application in dye-sensitized solar cells. J. Mater. Chem. 22, 20381–20386 (2012)

    Article  Google Scholar 

  34. Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  Google Scholar 

  35. Augustynski, J.: The role of the surface intermediates in the photoelectrochemical behavior of anatase and rutile TiO2. Electrochim. Acta 38, 43–46 (1993)

    Article  Google Scholar 

  36. Fang, W.Q., Gong, X.-Q., Yang, H.G.: On the unusual properties of anatase TiO2 exposed by highly reactive facets. J. Phys. Chem. L. 2, 725–734 (2011)

    Article  Google Scholar 

  37. Bickley, R.I., Gonzalezcarreno, T., Lees, J.S., Palmisano, L., Tilley, R.J.D.: A structural investigation of titanium-dioxide photocatalysts. J. Solid State Chem. 92, 178–190 (1991)

    Article  Google Scholar 

  38. Reeves, P., Ohlhausen, R., Sloan, D., Pamplin, K., Scoggins, T., Clark, C., Hutchinson, B., Green, D.: Photocatalytic destruction of organic-dyes in aqueous TiO2 suspensions using concentrated simulated and natural solar-energy. Sol. Energy 48, 413–420 (1992)

    Article  Google Scholar 

  39. Bacsa, R.R., Kiwi, J.: Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid. Appl. Catal. B-environ 16, 19–29 (1998)

    Article  Google Scholar 

  40. Yamazaki, S., Matsunaga, S., Hori, K.: Photocatalytic degradation of trichloroethylene in water using TiO(2) pellets. Water Res. 35, 1022–1028 (2001)

    Article  Google Scholar 

  41. Chen, H.H., Nanayakkara, C.E., Grassian, V.H.: Titanium dioxide photocatalysis in atmospheric chemistry. Chem. Rev. 112, 5919–5948 (2012)

    Article  Google Scholar 

  42. Linsebigler, A.L., Lu, G.Q., Yates, J.T.: Photocatalysis on TiO2 surfaces—principles, mechanisms and selected results. Chem. Rev. 95, 735–758 (1995)

    Article  Google Scholar 

  43. Shiraiwa, M., Sosedova, Y., Rouviere, A., Yang, H., Zhang, Y.Y., Abbatt, J.P.D., Ammann, M., Poschl, U.: The role of long-lived reactive oxygen intermediates in the reaction of ozone with aerosol particles. Nat. Chem. 3, 291–295 (2011)

    Article  Google Scholar 

  44. Fujishima, A., Zhang, X.T., Tryk, D.A.: TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008)

    Article  Google Scholar 

  45. Hoffmann, M.R., Martin, S.T., Choi, W.Y., Bahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Article  Google Scholar 

  46. Chen, X., Mao, S.S.: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007)

    Article  Google Scholar 

  47. Mills, A., LeHunte, S.: An overview of semiconductor photocatalysis. J. Photochem. Photobiol., A 108, 1–35 (1997)

    Article  Google Scholar 

  48. Li, W., Wang, Y., Lin, H., Shah, S.I., Huang, C.P., Doren, D.J., Rykov, S.A., Chen, J.G., Barteau, M.A.: Band gap tailoring of Nd3+-doped TiO2 nanoparticles. Appl. Phys. Lett. 83, 4143–4145 (2003)

    Article  Google Scholar 

  49. Morikawa, T., Asahi, R., Ohwaki, T., Aoki, K., Taga, Y.: Band-gap narrowing of titanium dioxide by nitrogen doping. Jpn. J Appl. Phys. Part 2-Lett. 40, L561–L563 (2001)

    Google Scholar 

  50. Nakano, Y., Morikawa, T., Ohwaki, T., Taga, Y.: Deep-level optical spectroscopy investigation of N-doped TiO2 films. Appl. Phys. Lett. 86, 132104 (2005)

    Article  Google Scholar 

  51. Vogel, R., Hoyer, P., Weller, H.: Quantum-sized PBS, CDS, AG2S, SB2S3, and BI2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J. Phys. Chem. 98, 3183–3188 (1994)

    Article  Google Scholar 

  52. Fitzmaurice, D., Frei, H., Rabani, J.: Time-resolved optical study on the charge-carrier dynamics in a TiO2/AGI sandwich colloid. J. Phys. Chem. 99, 9176–9181 (1995)

    Article  Google Scholar 

  53. Zhang, Z.J., Wang, W.Z., Yin, W.Z., Shang, M., Wang, L., Sun, S.M.: Inducing photocatalysis by visible light beyond the absorption edge: effect of upconversion agent on the photocatalytic activity of Bi2WO6. Appl. Catal. B-environ 101, 68–73 (2010)

    Article  Google Scholar 

  54. Qin, W.P., Zhang, D.S., Zhao, D., Wang, L.L., Zheng, K.Z.: Near-infrared photocatalysis based on YF3:Yb3+, Tm3+/TiO2 core/shell nanoparticles. Chem. Commun. 46, 2304–2306 (2010)

    Article  Google Scholar 

  55. Shi, J.W., Ye, J.H., Ma, L.J., Ouyang, S.X., Jing, D.W., Guo, L.J.: Site-selected doping of upconversion luminescent Er3+ into SrTiO3 for visible-light-driven photocatalytic H–2 or O–2 evolution. Chem. Eur. J. 18, 7543–7551 (2012)

    Article  Google Scholar 

  56. Ren, L., Qi, X., Liu, Y.D., Huang, Z.Y., Wei, X.L., Li, J., Yang, L.W., Zhong, J.X.: Upconversion-P25-graphene composite as an advanced sunlight driven photocatalytic hybrid material. J. Mater. Chem. 22, 11765–11771 (2012)

    Article  Google Scholar 

  57. Obregon, S., Colon, G.: Evidence of upconversion luminescence contribution to the improved photoactivity of erbium doped TiO2 systems. Chem. Commun. 48, 7865–7867 (2012)

    Article  Google Scholar 

  58. Li, Z.X., Shi, F.B., Zhang, T., Wu, H.S., Sun, L.D., Yan, C.H.: Ytterbium stabilized ordered mesoporous titania for near-infrared photocatalysis. Chem. Commun. 47, 8109–8111 (2011)

    Article  Google Scholar 

  59. Feng, G.F., Liu, S.W., Xiu, Z.L., Zhang, Y., Yu, J.X., Chen, Y.G., Wang, P., Yu, X.J.: Visible light photocatalytic activities of TiO2 nanocrystals doped with upconversion luminescence agent. J. Phys. Chem. C 112, 13692–13699 (2008)

    Article  Google Scholar 

  60. Li, C.H., Wang, F., Zhu, J.A., Yu, J.C.: NaYF4 Yb, Tm/CdS composite as a novel near-infrared-driven photocatalyst. Appl. Catal. B-environ 100, 433–439 (2010)

    Article  Google Scholar 

  61. Suyver, J.F., Aebischer, A., Biner, D., Gerner, P., Grimm, J., Heer, S., Kramer, K.W., Reinhard, C., Gudel, H.U.: Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion. Opt. Mater. 27, 1111–1130 (2005)

    Article  Google Scholar 

  62. Meruga, J.M., Baride, A., Cross, W., Kellar, J.J., May, P.S.: Red-green-blue printing using luminescence-upconversion inks. J Mater. Chem. C 2, 2221–2227 (2014)

    Article  Google Scholar 

  63. Kim, W.J., Nyk, M., Prasad, P.N.: Color-coded multilayer photopatterned microstructures using lanthanide (III) ion co-doped NaYF4 nanoparticles with upconversion luminescence for possible applications in security. Nanotechnology 20, 185301 (2009)

    Article  Google Scholar 

  64. Blumenthal, T., Meruga, J., May, P.S., Kellar, J., Cross, W., Ankireddy, K., Vunnam, S., Luu, Q.N.: Patterned direct-write and screen-printing of NIR-to-visible upconverting inks for security applications. Nanotechnology 23, 185305 (2012)

    Article  Google Scholar 

  65. Meruga, J.M., Cross, W.M., May, P.S., Luu, Q., Crawford, G.A., Kellar, J.J.: Security printing of covert quick response codes using upconverting nanoparticle inks. Nanotechnology 23, 395201 (2012)

    Article  Google Scholar 

  66. Sangeetha, N.M., Moutet, P., Lagarde, D., Sallen, G., Urbaszek, B., Marie, X., Viau, G., Ressier, L.: 3D assembly of upconverting NaYF4 nanocrystals by AFM nanoxerography: creation of anti-counterfeiting microtags. Nanoscale 5, 9587–9592 (2013)

    Article  Google Scholar 

  67. Zhang, Y.H., Zhang, L.X., Deng, R.R., Tian, J., Zong, Y., Jin, D.Y., Liu, X.G.: Multicolor Barcoding in a single upconversion crystal. J. Am. Chem. Soc. 136, 4893–4896 (2014)

    Article  Google Scholar 

  68. Liu, F., Ma, E., Chen, D.Q., Yu, Y.L., Wang, Y.S.: Tunable red-green upconversion luminescence in novel transparent glass ceramics containing Er: NaYF4 nanocrystals. J. Phys. Chem. B 110, 20843–20846 (2006)

    Article  Google Scholar 

  69. Chen, D.Q., Wang, Y.S., Zheng, K.L., Guo, T.L., Yu, Y.L., Huang, P.: Bright upconversion white light emission in transparent glass ceramic embedding Tm(3+)/Er(3+)/Yb(3+):beta-YF(3) nanocrystals. Appl. Phys. Lett. 91, 251903 (2007)

    Article  Google Scholar 

  70. Chen, D.Q., Yu, Y.L., Huang, P., Weng, F.Y., Lin, H., Wang, Y.S.: Optical spectroscopy of Eu3+ and Tb3+ doped glass ceramics containing LiYbF4 nanocrystals. Appl. Phys. Lett. 94, 041909 (2009)

    Article  Google Scholar 

  71. Chen, D.Q., Yu, Y.L., Wang, Y.S., Huang, P., Weng, F.Y.: Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics. J. Phys. Chem. C 113, 6406–6410 (2009)

    Article  Google Scholar 

  72. Chen, D.Q., Yu, Y.L., Huang, P., Wang, Y.S.: Nanocrystallization of lanthanide trifluoride in an aluminosilicate glass matrix: dimorphism and rare earth partition. CrystEngComm 11, 1686–1690 (2009)

    Article  Google Scholar 

  73. Chen, D.Q., Yu, Y.L., Huang, P., Lin, H., Shan, Z.F., Wang, Y.S.: Color-tunable luminescence of Eu3+ in LaF3 embedded nanocomposite for light emitting diode. Acta Mater. 58, 3035–3041 (2010)

    Article  Google Scholar 

  74. Sivakumar, R., van Veggel, F., Raudsepp, M.: Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln(3+)-doped LaF3 nanoparticles. J. Am. Chem. Soc. 127, 12464–12465 (2005)

    Article  Google Scholar 

  75. Sudarsan, V., Sivakumar, S., van Veggel, F., Raudsepp, M.: General and convenient method for making highly luminescent sol-gel derived silica and alumina films by using LaF3 nanoparticles doped with lanthanide ions (Er3+, Nd3+, and Ho3+). Chem. Mater. 17, 4736–4742 (2005)

    Article  Google Scholar 

  76. Sivakumar, S., Boyer, J.C., Bovero, E., van Veggel, F.: Up-conversion of 980 nm light into white light from sol-gel derived thin film made with new combinations of LaF3:Ln(3+) nanoparticles. J. Mater. Chem. 19, 2392–2399 (2009)

    Article  Google Scholar 

  77. Zhang, C., Zhou, H.P., Liao, L.Y., Feng, W., Sun, W., Li, Z.X., Xu, C.H., Fang, C.J., Sun, L.D., Zhang, Y.W., Yan, C.H.: Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: rewritable optical storage with nondestructive readout. Adv. Mater. 22, 633–637 (2010)

    Article  Google Scholar 

  78. Lin, C.K., Berry, M.T., Anderson, R., Smith, S., May, P.S.: Highly luminescent NIR-to-visible upconversion thin films and monoliths requiring no high-temperature treatment. Chem. Mater. 21, 3406–3413 (2009)

    Article  Google Scholar 

  79. Boyer, J.C., Johnson, N.J.J., van Veggel, F.: Upconverting lanthanide-doped NaYF4-PMMA polymer composites prepared by in situ polymerization. Chem. Mater. 21, 2010–2012 (2009)

    Article  Google Scholar 

  80. Chai, R.T., Lian, H.Z., Hou, Z.Y., Zhang, C.M., Peng, C., Lin, J.: Preparation and characterization of upconversion luminescent NaYF4:Yb3+, Er3+(Tm3+)/PMMA bulk transparent nanocomposites through in situ photopolymerization. J. Phys. Chem. C 114, 610–616 (2010)

    Article  Google Scholar 

  81. Downing, E., Hesselink, L., Ralston, J., Macfarlane, R.: A three-color, solid-state, three-dimensional display. Science 273, 1185–1189 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, F. (2015). Upconversion Nanoparticles for Other Applications. In: Photon Upconversion Nanomaterials. Nanostructure Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45597-5_11

Download citation

Publish with us

Policies and ethics