Skip to main content

Radiologic Diagnosis (CT, MRI, & PET-CT)

  • Chapter
  • First Online:
Surgery for Gastric Cancer

Abstract

Stomach cancer is one of the leading causes of cancer-related mortality worldwide, which is more prevalent in Asian countries. Complete resection of a gastric tumor and regional lymph nodes has been considered to be the only potentially curative treatment. However, development of endoscopic procedures to treat early gastric cancer and chemotherapeutic agents to treat advanced disease provides more dedicated treatment options. Therefore, accurate preoperative staging is essential for deciding management plan and improving patient’s outcome. Computed tomography (CT) is the standard imaging modality used in preoperative tumor staging for evaluating the local tumor extent, involvement of lymph nodes, and distant metastasis. Recently, technical advances in CT using thin section thickness, optimal contrast enhancement, and multiplanar reformation have improved diagnostic performance for preoperative staging. Although magnetic resonance imaging (MRI) has not been widely used to assess gastric cancer due to its intrinsic limitations, excellent soft tissue contrast and development of rapid imaging sequences may enable MRI to be a feasible modality. Positron emission tomography (PET) with 2-[fluorine-18] fluoro-2-deoxy-D-glucose (FDG) is a well-recognized useful diagnostic tool in clinical oncology. In particular, as FDG PET images the whole body, it is a promising tool for detecting distant metastases. In this chapter, we describe the role of CT in preoperative staging and CT findings of stomach cancer according to TNM staging. We also discuss the efficacy and the potential role of MRI and FDG PET for preoperative assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Minami M, Kawauchi N, Itai Y, Niki T, Sasaki Y. Gastric tumors: radiologic-pathologic correlation and accuracy of T staging with dynamic CT. Radiology. 1992;185(1):173–8. https://doi.org/10.1148/radiology.185.1.1523303.

    Article  CAS  PubMed  Google Scholar 

  2. Virmani V, Khandelwal A, Sethi V, Fraser-Hill M, Fasih N, Kielar A. Neoplastic stomach lesions and their mimickers: spectrum of imaging manifestations. Cancer Imag. 2012;12:269–78. https://doi.org/10.1102/1470-7330.2012.0031.

    Article  Google Scholar 

  3. Ba-Ssalamah A, Prokop M, Uffmann M, Pokieser P, Teleky B, Lechner G. Dedicated multidetector CT of the stomach: spectrum of diseases. Radiographics. 2003;23(3):625–44. https://doi.org/10.1148/rg.233025127.

    Article  PubMed  Google Scholar 

  4. Lim JS, Yun MJ, Kim MJ, Hyung WJ, Park MS, Choi JY, Kim TS, Lee JD, Noh SH, Kim KW. CT and PET in stomach cancer: preoperative staging and monitoring of response to therapy. Radiographics. 2006;26(1):143–56. https://doi.org/10.1148/rg.261055078.

    Article  PubMed  Google Scholar 

  5. Lee IJ, Lee JM, Kim SH, Shin CI, Lee JY, Kim SH, Han JK, Choi BI. Diagnostic performance of 64-channel multidetector CT in the evaluation of gastric cancer: differentiation of mucosal cancer (T1a) from submucosal involvement (T1b and T2). Radiology. 2010;255(3):805–14. https://doi.org/10.1148/radiol.10091313.

    Article  PubMed  Google Scholar 

  6. Kim JW, Shin SS, Heo SH, Choi YD, Lim HS, Park YK, Park CH, Jeong YY, Kang HK. Diagnostic performance of 64-section CT using CT gastrography in preoperative T staging of gastric cancer according to 7th edition of AJCC cancer staging manual. Eur Radiol. 2012;22(3):654–62. https://doi.org/10.1007/s00330-011-2283-3.

    Article  PubMed  Google Scholar 

  7. Kim YH, Lee KH, Park SH, Kim HH, Hahn S, Park do J, Lee HS. Staging of T3 and T4 gastric carcinoma with multidetector CT: added value of multiplanar reformations for prediction of adjacent organ invasion. Radiology. 2009;250(3):767–75. https://doi.org/10.1148/radiol.2502071872.

    Article  PubMed  Google Scholar 

  8. Lee MH, Choi D, Park MJ, Lee MW. Gastric cancer: imaging and staging with MDCT based on the 7th AJCC guidelines. Abdom Imaging. 2012;37(4):531–40. https://doi.org/10.1007/s00261-011-9780-3.

    Article  PubMed  Google Scholar 

  9. Kwee RM, Kwee TC. Imaging in local staging of gastric cancer: a systematic review. J Clin Oncol. 2007;25(15):2107–16. https://doi.org/10.1200/jco.2006.09.5224.

    Article  PubMed  Google Scholar 

  10. Seevaratnam R, Cardoso R, McGregor C, Lourenco L, Mahar A, Sutradhar R, Law C, Paszat L, Coburn N. How useful is preoperative imaging for tumor, node, metastasis (TNM) staging of gastric cancer? A meta-analysis. Gastric Cancer. 2012;15(Suppl 1):S3–18. https://doi.org/10.1007/s10120-011-0069-6.

    Article  PubMed  Google Scholar 

  11. Kim HJ, Kim AY, Oh ST, Kim JS, Kim KW, Kim PN, Lee MG, Ha HK. Gastric cancer staging at multi-detector row CT gastrography: comparison of transverse and volumetric CT scanning. Radiology. 2005;236(3):879–85. https://doi.org/10.1148/radiol.2363041101.

    Article  PubMed  Google Scholar 

  12. Kim JH, Eun HW, Choi JH, Hong SS, Kang W, Auh YH. Diagnostic performance of virtual gastroscopy using MDCT in early gastric cancer compared with 2D axial CT: focusing on interobserver variation. AJR Am J Roentgenol. 2007;189(2):299–305. https://doi.org/10.2214/ajr.07.2201.

    Article  PubMed  Google Scholar 

  13. AJCC Cancer Staging Handbook. 7th ed. Philadelphia: Spinger-Verlag; 2010.

    Google Scholar 

  14. D’Elia F, Zingarelli A, Palli D, Grani M. Hydro-dynamic CT preoperative staging of gastric cancer: correlation with pathological findings. A prospective study of 107 cases. Eur Radiol. 2000;10(12):1877–85. https://doi.org/10.1007/s003300000537.

    Article  PubMed  Google Scholar 

  15. Fukuya T, Honda H, Hayashi T, Kaneko K, Tateshi Y, Ro T, Maehara Y, Tanaka M, Tsuneyoshi M, Masuda K. Lymph-node metastases: efficacy for detection with helical CT in patients with gastric cancer. Radiology. 1995;197(3):705–11. https://doi.org/10.1148/radiology.197.3.7480743.

    Article  CAS  PubMed  Google Scholar 

  16. Chen CY, Hsu JS, Wu DC, Kang WY, Hsieh JS, Jaw TS, Wu MT, Liu GC. Gastric cancer: preoperative local staging with 3D multi-detector row CT – correlation with surgical and histopathologic results. Radiology. 2007;242(2):472–82. https://doi.org/10.1148/radiol.2422051557.

    Article  PubMed  Google Scholar 

  17. Kim AY, Kim HJ, Ha HK. Gastric cancer by multidetector row CT: preoperative staging. Abdom Imaging. 2005;30(4):465–72. https://doi.org/10.1007/s00261-004-0273-5.

    Article  CAS  PubMed  Google Scholar 

  18. Kim HS, Han HY, Choi JA, Park CM, Cha IH, Chung KB, Mok YJ. Preoperative evaluation of gastric cancer: value of spiral CT during gastric arteriography (CTGA). Abdom Imaging. 2001;26(2):123–30.

    Article  CAS  Google Scholar 

  19. Cho JS, Kim JK, Rho SM, Lee HY, Jeong HY, Lee CS. Preoperative assessment of gastric carcinoma: value of two-phase dynamic CT with mechanical iv. injection of contrast material. AJR Am J Roentgenol. 1994;163(1):69–75. https://doi.org/10.2214/ajr.163.1.8010251.

    Article  CAS  PubMed  Google Scholar 

  20. Association JGC. Japanese gastric cancer treatment guidelines 2010 (ver. 3). Gastric Cancer. 2011;14(2):113–23. https://doi.org/10.1007/s10120-011-0042-4.

    Article  Google Scholar 

  21. Kim YH, Lee YJ, Park JH, Lee KH, Lee HS, Park YS, Park do J, Kim HH. Early gastric cancer: feasibility of CT lymphography with ethiodized oil for sentinel node mapping. Radiology. 2013;267(2):414–21. https://doi.org/10.1148/radiol.12121527.

    Article  PubMed  Google Scholar 

  22. Kim H, Lee SK, Kim YM, Lee EH, Lim SJ, Kim SH, Yang J, Lim JS, Hyung WJ. Fluorescent iodized emulsion for pre- and intraoperative sentinel lymph node imaging: validation in a preclinical model. Radiology. 2015;275(1):196–204. https://doi.org/10.1148/radiol.14141159.

    Article  PubMed  Google Scholar 

  23. Lim JS, Choi J, Song J, Chung YE, Lim SJ, Lee SK, Hyung WJ. Nanoscale iodized oil emulsion: a useful tracer for pretreatment sentinel node detection using CT lymphography in a normal canine gastric model. Surg Endosc. 2012;26(8):2267–74. https://doi.org/10.1007/s00464-012-2170-2.

    Article  PubMed  Google Scholar 

  24. Miller FH, Kochman ML, Talamonti MS, Ghahremani GG, Gore RM. Gastric cancer. Radiologic staging. Radiol Clin N Am. 1997;35(2):331–49.

    CAS  PubMed  Google Scholar 

  25. Gore RM. Gastric cancer. Clinical and pathologic features. Radiol Clin N Am. 1997;35(2):295–310.

    CAS  PubMed  Google Scholar 

  26. Cotran RS, Kumar V, Robbins SL. Robbins pathologic basis of disease, vol. 962. 4th ed. Philadelphia: Saunders; 1989.

    Google Scholar 

  27. Kim SJ, Kim HH, Kim YH, Hwang SH, Lee HS, Park do J, Kim SY, Lee KH. Peritoneal metastasis: detection with 16- or 64-detector row CT in patients undergoing surgery for gastric cancer. Radiology. 2009;253(2):407–15. https://doi.org/10.1148/radiol.2532082272.

    Article  PubMed  Google Scholar 

  28. Chang DK, Kim JW, Kim BK, Lee KL, Song CS, Han JK, Song IS. Clinical significance of CT-defined minimal ascites in patients with gastric cancer. World J Gastroenterol. 2005;11(42):6587–92.

    Article  Google Scholar 

  29. Walkey MM, Friedman AC, Sohotra P, Radecki PD. CT manifestations of peritoneal carcinomatosis. AJR Am J Roentgenol. 1988;150(5):1035–41. https://doi.org/10.2214/ajr.150.5.1035.

    Article  CAS  PubMed  Google Scholar 

  30. Yajima K, Kanda T, Ohashi M, Wakai T, Nakagawa S, Sasamoto R, Hatakeyama K. Clinical and diagnostic significance of preoperative computed tomography findings of ascites in patients with advanced gastric cancer. Am J Surg. 2006;192(2):185–90. https://doi.org/10.1016/j.amjsurg.2006.05.007.

    Article  PubMed  Google Scholar 

  31. Pan Z, Zhang H, Yan C, Du L, Ding B, Song Q, Ling H, Huang B, Chen K. Determining gastric cancer resectability by dynamic MDCT. Eur Radiol. 2010;20(3):613–20. https://doi.org/10.1007/s00330-009-1576-2.

    Article  PubMed  Google Scholar 

  32. Wang Z, Chen JQ. Imaging in assessing hepatic and peritoneal metastases of gastric cancer: a systematic review. BMC Gastroenterol. 2011;11:19. https://doi.org/10.1186/1471-230x-11-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Botet JF, Lightdale CJ, Zauber AG, Gerdes H, Winawer SJ, Urmacher C, Brennan MF. Preoperative staging of gastric cancer: comparison of endoscopic US and dynamic CT. Radiology. 1991;181(2):426–32. https://doi.org/10.1148/radiology.181.2.1924784.

    Article  CAS  PubMed  Google Scholar 

  34. Takiguchi S, Sekimoto M, Fujiwara Y, Yasuda T, Yano M, Hori M, Murakami T, Nakamura H, Monden M. Laparoscopic lymph node dissection for gastric cancer with intraoperative navigation using three-dimensional angio computed tomography images reconstructed as laparoscopic view. Surg Endosc. 2004;18(1):106–10. https://doi.org/10.1007/s00464-003-8116-y.

    Article  CAS  PubMed  Google Scholar 

  35. Matsuki M, Tanikake M, Kani H, Tatsugami F, Kanazawa S, Kanamoto T, Inada Y, Yoshikawa S, Narabayashi I, Lee SW, Nomura E, Okuda J, Tanigawa N. Dual-phase 3D CT angiography during a single breath-hold using 16-MDCT: assessment of vascular anatomy before laparoscopic gastrectomy. AJR Am J Roentgenol. 2006;186(4):1079–85. https://doi.org/10.2214/ajr.04.0733.

    Article  PubMed  Google Scholar 

  36. Lee SW, Shinohara H, Matsuki M, Okuda J, Nomura E, Mabuchi H, Nishiguchi K, Takaori K, Narabayashi I, Tanigawa N. Preoperative simulation of vascular anatomy by three-dimensional computed tomography imaging in laparoscopic gastric cancer surgery. J Am Coll Surg. 2003;197(6):927–36. https://doi.org/10.1016/j.jamcollsurg.2003.07.021.

    Article  PubMed  Google Scholar 

  37. Adachi Y, Mori M, Kido A, Shimono R, Maehara Y, Sugimachi K. A clinicopathologic study of mucinous gastric carcinoma. Cancer. 1992;69(4):866–71.

    Article  CAS  Google Scholar 

  38. Wu CY, Yeh HZ, Shih RT, Chen GH. A clinicopathologic study of mucinous gastric carcinoma including multivariate analysis. Cancer. 1998;83(7):1312–8.

    Article  CAS  Google Scholar 

  39. Songur Y, Okai T, Watanabe H, Fujii T, Motoo Y, Sawabu N. Preoperative diagnosis of mucinous gastric adenocarcinoma by endoscopic ultrasonography. Am J Gastroenterol. 1996;91(8):1586–90.

    CAS  PubMed  Google Scholar 

  40. Watanabe H, Jass JR, Sobin LH. Histological typing of esophageal and gastric tumours. WHO international histological classification of tumors. 2nd ed. Berlin: Spriner-Verlag; 1990.

    Book  Google Scholar 

  41. Hyung WJ, Noh SH, Shin DW, Yoo CH, Kim CB, Min JS, Lee KS. Clinicopathologic characteristics of mucinous gastric adenocarcinoma. Yonsei Med J. 1999;40(2):99–106.

    Article  CAS  Google Scholar 

  42. Park MS, Yu JS, Kim MJ, Yoon SW, Kim SH, Noh TW, Lee KH, Lee JT, Yoo HS, Kim KW. Mucinous versus nonmucinous gastric carcinoma: differentiation with helical CT. Radiology. 2002;223(2):540–6. https://doi.org/10.1148/radiol.2232010905.

    Article  PubMed  Google Scholar 

  43. Nishimura K, Togashi K, Tohdo G, Dodo Y, Tanada S, Nakano Y, Torizuka K. Computed tomography of calcified gastric carcinoma. J Comput Assist Tomogr. 1984;8(5):1010–1.

    Article  CAS  Google Scholar 

  44. Libson E, Bloom RA, Blank P, Emerson DS. Calcified mucinous adenocarcinoma of the stomach – the CT appearances. Comput Radiol. 1985;9(4):255–8.

    Article  CAS  Google Scholar 

  45. Gossios K, Katsimbri P, Tsianos E. CT features of gastric lymphoma. Eur Radiol. 2000;10(3):425–30. https://doi.org/10.1007/s003300050069.

    Article  CAS  PubMed  Google Scholar 

  46. Lewin KJ, Ranchod M, Dorfman RF. Lymphomas of the gastrointestinal tract: a study of 117 cases presenting with gastrointestinal disease. Cancer. 1978;42(2):693–707.

    Article  CAS  Google Scholar 

  47. Wotherspoon AC, Ortiz-Hidalgo C, Falzon MR, Isaacson PG. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet (London, England). 1991;338(8776):1175–6.

    Article  CAS  Google Scholar 

  48. Isaacson PG, Spencer J, Finn T. Primary B-cell gastric lymphoma. Hum Pathol. 1986;17(1):72–82.

    Article  CAS  Google Scholar 

  49. Cho KC, Baker SR, Alterman DD, Fusco JM, Cho S. Transpyloric spread of gastric tumors: comparison of adenocarcinoma and lymphoma. AJR Am J Roentgenol. 1996;167(2):467–9. https://doi.org/10.2214/ajr.167.2.8686627.

    Article  CAS  PubMed  Google Scholar 

  50. Buy JN, Moss AA. Computed tomography of gastric lymphoma. AJR Am J Roentgenol. 1982;138(5):859–65. https://doi.org/10.2214/ajr.138.5.859.

    Article  CAS  PubMed  Google Scholar 

  51. Kul S, Sert B, Sari A, Arslan M, Kosucu P, Ahmetoglu A, Dinc H. Effect of subclinical Helicobacter pylori infection on gastric wall thickness: multislice CT evaluation. Diagn Interv Radiol (Ankara, Turkey). 2008;14(3):138–42.

    Google Scholar 

  52. Urban BA, Fishman EK, Hruban RH. Helicobacter pylori gastritis mimicking gastric carcinoma at CT evaluation. Radiology. 1991;179(3):689–91. https://doi.org/10.1148/radiology.179.3.1888360.

    Article  CAS  PubMed  Google Scholar 

  53. Frommer DJ, Carrick J, Lee A, Hazell SL. Acute presentation of Campylobacter pylori gastritis. Am J Gastroenterol. 1988;83(10):1168–71.

    CAS  PubMed  Google Scholar 

  54. Hallinan JT, Venkatesh SK. Gastric carcinoma: imaging diagnosis, staging and assessment of treatment response. Cancer Imaging. 2013;13:212–27. https://doi.org/10.1102/1470-7330.2013.0023.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Maccioni F, Marcelli G, Al Ansari N, Zippi M, De Marco V, Kagarmanova A, Vestri A, Marcheggiano-Clarke L, Marini M. Preoperative T and N staging of gastric cancer: magnetic resonance imaging (MRI) versus multi detector computed tomography (MDCT). Clin Ter. 2010;161(2):e57–62.

    CAS  PubMed  Google Scholar 

  56. Anzidei M, Napoli A, Zaccagna F, Di Paolo P, Zini C, Cavallo Marincola B, Geiger D, Catalano C, Passariello R. Diagnostic performance of 64-MDCT and 1.5-T MRI with high-resolution sequences in the T staging of gastric cancer: a comparative analysis with histopathology. Radiol Med. 2009;114(7):1065–79. https://doi.org/10.1007/s11547-009-0455-x.

    Article  CAS  PubMed  Google Scholar 

  57. Sohn KM, Lee JM, Lee SY, Ahn BY, Park SM, Kim KM. Comparing MR imaging and CT in the staging of gastric carcinoma. AJR Am J Roentgenol. 2000;174(6):1551–7. https://doi.org/10.2214/ajr.174.6.1741551.

    Article  CAS  PubMed  Google Scholar 

  58. Kim AY, Han JK, Seong CK, Kim TK, Choi BI. MRI in staging advanced gastric cancer: is it useful compared with spiral CT? J Comput Assist Tomogr. 2000;24(3):389–94.

    Article  CAS  Google Scholar 

  59. Wang CK, Kuo YT, Liu GC, Tsai KB, Huang YS. Dynamic contrast-enhanced subtraction and delayed MRI of gastric tumors: radiologic-pathologic correlation. J Comput Assist Tomogr. 2000;24(6):872–7.

    Article  CAS  Google Scholar 

  60. Kang BC, Kim JH, Kim KW, Lee DY, Baek SY, Lee SW, Jung WH. Value of the dynamic and delayed MR sequence with Gd-DTPA in the T-staging of stomach cancer: correlation with the histopathology. Abdom Imaging. 2000;25(1):14–24.

    Article  CAS  Google Scholar 

  61. Kwee TC, Takahara T, Ochiai R, Nievelstein RA, Luijten PR. Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS): features and potential applications in oncology. Eur Radiol. 2008;18(9):1937–52. https://doi.org/10.1007/s00330-008-0968-z.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Joo I, Lee JM, Kim JH, Shin CI, Han JK, Choi BI. Prospective comparison of 3T MRI with diffusion-weighted imaging and MDCT for the preoperative TNM staging of gastric cancer. J Magn Reson Imaging. 2015;41(3):814–21. https://doi.org/10.1002/jmri.24586.

    Article  PubMed  Google Scholar 

  63. Tatsumi Y, Tanigawa N, Nishimura H, Nomura E, Mabuchi H, Matsuki M, Narabayashi I. Preoperative diagnosis of lymph node metastases in gastric cancer by magnetic resonance imaging with ferumoxtran-10. Gastric Cancer. 2006;9(2):120–8. https://doi.org/10.1007/s10120-006-0365-8.

    Article  PubMed  Google Scholar 

  64. Wang YX. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant Imaging Med Surg. 2011;1(1):35–40. https://doi.org/10.3978/j.issn.2223-4292.2011.08.03.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8(6):519–30.

    Article  CAS  Google Scholar 

  66. Ajani JA, Bentrem DJ, Besh S, D’Amico TA, Das P, Denlinger C, Fakih MG, Fuchs CS, Gerdes H, Glasgow RE. Gastric cancer, version 2.2013. J Natl Compr Cancer Netw. 2013;11(5):531–46.

    Article  CAS  Google Scholar 

  67. Waddell T, Verheij M, Allum W, Cunningham D, Cervantes A, Arnold D, European Society for Medical O, European Society of Surgical O, European Society of R, Oncology. Gastric cancer: ESMO-ESSO-ESTRO clinical practice guidelines for diagnosis, treatment and follow-up. Eur J Surg Oncol. 2014;40(5):584–91. https://doi.org/10.1016/j.ejso.2013.09.020.

    Article  CAS  PubMed  Google Scholar 

  68. Yun M, Choi HS, Yoo E, Bong JK, Ryu YH, Lee JD. The role of gastric distention in differentiating recurrent tumor from physiologic uptake in the remnant stomach on 18F-FDG PET. J Nucl Med. 2005;46(6):953–7.

    PubMed  Google Scholar 

  69. Le Roux PY, Duong CP, Cabalag CS, Parameswaran BK, Callahan J, Hicks RJ. Incremental diagnostic utility of gastric distension FDG PET/CT. Eur J Nucl Med Mol Imaging. 2015. https://doi.org/10.1007/s00259-015-3211-6.

    Article  Google Scholar 

  70. Mukai K, Ishida Y, Okajima K, Isozaki H, Morimoto T, Nishiyama S. Usefulness of preoperative FDG-PET for detection of gastric cancer. Gastric Cancer. 2006;9(3):192–6. https://doi.org/10.1007/s10120-006-0374-7.

    Article  PubMed  Google Scholar 

  71. Stahl A, Ott K, Weber WA, Becker K, Link T, Siewert JR, Schwaiger M, Fink U. FDG PET imaging of locally advanced gastric carcinomas: correlation with endoscopic and histopathological findings. Eur J Nucl Med Mol Imaging. 2003;30(2):288–95. https://doi.org/10.1007/s00259-002-1029-5.

    Article  CAS  PubMed  Google Scholar 

  72. Smyth E, Schoder H, Strong VE, Capanu M, Kelsen DP, Coit DG, Shah MA. A prospective evaluation of the utility of 2-deoxy-2-[(18) F]fluoro-D-glucose positron emission tomography and computed tomography in staging locally advanced gastric cancer. Cancer. 2012;118(22):5481–8. https://doi.org/10.1002/cncr.27550.

    Article  PubMed  Google Scholar 

  73. Kawamura T, Kusakabe T, Sugino T, Watanabe K, Fukuda T, Nashimoto A, Honma K, Suzuki T. Expression of glucose transporter-1 in human gastric carcinoma: association with tumor aggressiveness, metastasis, and patient survival. Cancer. 2001;92(3):634–41.

    Article  CAS  Google Scholar 

  74. Hillner BE, Siegel BA, Shields AF, Liu D, Gareen IF, Hunt E, Coleman RE. Relationship between cancer type and impact of PET and PET/CT on intended management: findings of the national oncologic PET registry. J Nucl Med. 2008;49(12):1928–35. https://doi.org/10.2967/jnumed.108.056713.

    Article  PubMed  Google Scholar 

  75. Podoloff DA, Ball DW, Ben-Josef E, Benson AB 3rd, Cohen SJ, Coleman RE, Delbeke D, Ho M, Ilson DH, Kalemkerian GP, Lee RJ, Loeffler JS, Macapinlac HA, Morgan RJ Jr, Siegel BA, Singhal S, Tyler DS, Wong RJ. NCCN task force: clinical utility of PET in a variety of tumor types. J Natl Compr Cancer Netw. 2009;7(Suppl 2):S1–26.

    Article  Google Scholar 

  76. Dassen AE, Lips DJ, Hoekstra CJ, Pruijt JF, Bosscha K. FDG-PET has no definite role in preoperative imaging in gastric cancer. Eur J Surg Oncol. 2009;35(5):449–55. https://doi.org/10.1016/j.ejso.2008.11.010.

    Article  CAS  PubMed  Google Scholar 

  77. Chen J, Cheong JH, Yun MJ, Kim J, Lim JS, Hyung WJ, Noh SH. Improvement in preoperative staging of gastric adenocarcinoma with positron emission tomography. Cancer. 2005;103(11):2383–90. https://doi.org/10.1002/cncr.21074.

    Article  PubMed  Google Scholar 

  78. Namikawa T, Okabayshi T, Nogami M, Ogawa Y, Kobayashi M, Hanazaki K. Assessment of (18)F-fluorodeoxyglucose positron emission tomography combined with computed tomography in the preoperative management of patients with gastric cancer. Int J Clin Oncol. 2014;19(4):649–55. https://doi.org/10.1007/s10147-013-0598-6.

    Article  CAS  PubMed  Google Scholar 

  79. Takebayashi R, Izuishi K, Yamamoto Y, Kameyama R, Mori H, Masaki T, Suzuki Y. [18F]Fluorodeoxyglucose accumulation as a biological marker of hypoxic status but not glucose transport ability in gastric cancer. J Exp Clin Cancer Res. 2013;32:34. https://doi.org/10.1186/1756-9966-32-34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mochiki E, Kuwano H, Katoh H, Asao T, Oriuchi N, Endo K. Evaluation of 18F-2-deoxy-2-fluoro-D-glucose positron emission tomography for gastric cancer. World J Surg. 2004;28(3):247–53. https://doi.org/10.1007/s00268-003-7191-5.

    Article  PubMed  Google Scholar 

  81. Shimada H, Okazumi S, Koyama M, Murakami K. Japanese Gastric Cancer Association Task Force for Research Promotion: clinical utility of (1)(8)F-fluoro-2-deoxyglucose positron emission tomography in gastric cancer. A systematic review of the literature. Gastric Cancer. 2011;14(1):13–21. https://doi.org/10.1007/s10120-011-0017-5.

    Article  PubMed  Google Scholar 

  82. Graziosi L, Evoli LP, Cavazzoni E, Donini A. The role of 18 FDG-PET in gastric cancer. Transl Gastrointest Cancer. 2012;1(2):186–8.

    CAS  Google Scholar 

  83. Kaneko Y, Murray WK, Link E, Hicks RJ, Duong C. Improving patient selection for 18F-FDG PET scanning in the staging of gastric cancer. J Nucl Med. 2015;56(4):523–9. https://doi.org/10.2967/jnumed.114.150946.

    Article  CAS  PubMed  Google Scholar 

  84. Malibari N, Hickeson M, Lisbona R. PET/computed Tomography in the diagnosis and staging of gastric cancers. PET Clin. 2015;10(3):311–26. https://doi.org/10.1016/j.cpet.2015.03.008.

    Article  PubMed  Google Scholar 

  85. Lan XL, Zhang YX, Wu ZJ, Jia Q, Wei H, Gao ZR. The value of dual time point (18)F-FDG PET imaging for the differentiation between malignant and benign lesions. Clin Radiol. 2008;63(7):756–64. https://doi.org/10.1016/j.crad.2008.01.003.

    Article  PubMed  Google Scholar 

  86. Salaun PY, Grewal RK, Dodamane I, Yeung HW, Larson SM, Strauss HW. An analysis of the 18F-FDG uptake pattern in the stomach. J Nucl Med. 2005;46(1):48–51.

    PubMed  Google Scholar 

  87. Takahashi H, Ukawa K, Ohkawa N, Kato K, Hayashi Y, Yoshimoto K, Ishiyama A, Ueki N, Kuraoka K, Tsuchida T, Yamamoto Y, Chino A, Uragami N, Fujisaki J, Igarashi M, Fujita R, Koyama M, Yamashita T. Significance of (18)F-2-deoxy-2-fluoro-glucose accumulation in the stomach on positron emission tomography. Ann Nucl Med. 2009;23(4):391–7. https://doi.org/10.1007/s12149-009-0255-3.

    Article  PubMed  Google Scholar 

  88. Kwee RM, Kwee TC. Imaging in assessing lymph node status in gastric cancer. Gastric Cancer. 2009;12(1):6–22. https://doi.org/10.1007/s10120-008-0492-5.

    Article  CAS  PubMed  Google Scholar 

  89. Kim EY, Lee WJ, Choi D, Lee SJ, Choi JY, Kim BT, Kim HS. The value of PET/CT for preoperative staging of advanced gastric cancer: comparison with contrast-enhanced CT. Eur J Radiol. 2011;79(2):183–8. https://doi.org/10.1016/j.ejrad.2010.02.005.

    Article  PubMed  Google Scholar 

  90. Kim SK, Kang KW, Lee JS, Kim HK, Chang HJ, Choi JY, Lee JH, Ryu KW, Kim YW, Bae JM. Assessment of lymph node metastases using 18F-FDG PET in patients with advanced gastric cancer. Eur J Nucl Med Mol Imaging. 2006;33(2):148–55. https://doi.org/10.1007/s00259-005-1887-8.

    Article  PubMed  Google Scholar 

  91. Yun M. Imaging of gastric cancer metabolism using 18 F-FDG PET/CT. J Gastric Cancer. 2014;14(1):1–6. https://doi.org/10.5230/jgc.2014.14.1.1.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yun M, Lim JS, Noh SH, Hyung WJ, Cheong JH, Bong JK, Cho A, Lee JD. Lymph node staging of gastric cancer using (18)F-FDG PET: a comparison study with CT. J Nucl Med. 2005;46(10):1582–8.

    PubMed  Google Scholar 

  93. Lerut T, Flamen P, Ectors N, Van Cutsem E, Peeters M, Hiele M, De Wever W, Coosemans W, Decker G, De Leyn P, Deneffe G, Van Raemdonck D, Mortelmans L. Histopathologic validation of lymph node staging with FDG-PET scan in cancer of the esophagus and gastroesophageal junction: a prospective study based on primary surgery with extensive lymphadenectomy. Ann Surg. 2000;232(6):743–52.

    Article  CAS  Google Scholar 

  94. Yang QM, Kawamura T, Itoh H, Bando E, Nemoto M, Akamoto S, Furukawa H, Yonemura Y. Is PET-CT suitable for predicting lymph node status for gastric cancer? Hepato-Gastroenterology. 2008;55(82–83):782–5.

    PubMed  Google Scholar 

  95. Altini C, Niccoli Asabella A, Di Palo A, Fanelli M, Ferrari C, Moschetta M, Rubini G. 18F-FDG PET/CT role in staging of gastric carcinomas: comparison with conventional contrast enhancement computed tomography. Medicine (Baltimore). 2015;94(20):e864. https://doi.org/10.1097/MD.0000000000000864.

    Article  CAS  Google Scholar 

  96. Kim YH, Choi JY, Do IG, Kim S, Kim BT. Factors affecting 18F-FDG uptake by metastatic lymph nodes in gastric cancer. J Comput Assist Tomogr. 2013;37(5):815–9. https://doi.org/10.1097/RCT.0b013e3182972989.

    Article  PubMed  Google Scholar 

  97. Oh HH, Lee SE, Choi IS, Choi WJ, Yoon DS, Min HS, Ra YM, Moon JI, Kang YH. The peak-standardized uptake value (P-SUV) by preoperative positron emission tomography-computed tomography (PET-CT) is a useful indicator of lymph node metastasis in gastric cancer. J Surg Oncol. 2011;104(5):530–3. https://doi.org/10.1002/jso.21985.

    Article  PubMed  Google Scholar 

  98. Duarte I, Llanos O. Patterns of metastases in intestinal and diffuse types of carcinoma of the stomach. Hum Pathol. 1981;12(3):237–42.

    Article  CAS  Google Scholar 

  99. Esaki Y, Hirayama R, Hirokawa K. A comparison of patterns of metastasis in gastric cancer by histologic type and age. Cancer. 1990;65(9):2086–90.

    Article  CAS  Google Scholar 

  100. Noda S, Soejima K, Inokuchi K. Clinicopathological analysis of the intestinal type and diffuse type of gastric carcinoma. Jpn J Surg. 1980;10(4):277–83.

    Article  CAS  Google Scholar 

  101. Lim JS, Kim MJ, Yun MJ, Oh YT, Kim JH, Hwang HS, Park MS, Cha SW, Lee JD, Noh SH, Yoo HS, Kim KW. Comparison of CT and 18F-FDG pet for detecting peritoneal metastasis on the preoperative evaluation for gastric carcinoma. Korean J Radiol. 2006;7(4):249–56.

    Article  Google Scholar 

  102. Yoshioka T, Yamaguchi K, Kubota K, Saginoya T, Yamazaki T, Ido T, Yamaura G, Takahashi H, Fukuda H, Kanamaru R. Evaluation of 18F-FDG PET in patients with advanced, metastatic, or recurrent gastric cancer. J Nucl Med. 2003;44(5):690–9.

    CAS  PubMed  Google Scholar 

  103. Lim JS, Kim M-J, Oh YT, Kim JH, Hwang HS, Park M-S, Cha S-W, Lee JD, Noh SH, Yoo HS. Comparison of CT and 18F-FDG pet for detecting peritoneal metastasis on the preoperative evaluation for gastric carcinoma. Korean J Radiol. 2006;7(4):249–56.

    Article  Google Scholar 

  104. Turlakow A, Yeung HW, Salmon AS, Macapinlac HA, Larson SM. Peritoneal carcinomatosis: role of 18F-FDG PET. J Nucl Med. 2003;44(9):1407–12.

    PubMed  Google Scholar 

  105. Yang Q-M, Bando E, Kawamura T, Tsukiyama G, Nemoto M, Yonemura Y, Furukawa H. The diagnostic value of PET-CT for peritoneal dissemination of abdominal malignancies. Gan To Kagaku Ryoho. 2006;33(12):1817–21.

    CAS  PubMed  Google Scholar 

  106. Kim SJ, Cho YS, Moon SH, Bae JM, Kim S, Choe YS, Kim BT, Lee KH. Primary Tumor FDG Avidity affects the performance of FDG PET/CT for detecting gastric cancer recurrence. J Nucl Med. 2015. doi:https://doi.org/10.2967/jnumed.115.163295.

    Article  Google Scholar 

  107. Lee JW, Jo K, Cho A, Noh SH, Lee JD, Yun M. Relationship between 18F-FDG uptake on PET and recurrence patterns after curative surgical resection in patients with advanced gastric cancer. J Nucl Med. 2015;56(10):1494–500. https://doi.org/10.2967/jnumed.115.160580.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon Seok Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seo, N., Lim, J.S., Cho, A. (2019). Radiologic Diagnosis (CT, MRI, & PET-CT). In: Noh, S., Hyung, W. (eds) Surgery for Gastric Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45583-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45583-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45582-1

  • Online ISBN: 978-3-662-45583-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics