Advertisement

An integrated analysis of genome-wide DNA methylation and genetic variants underlying etoposide-induced cytotoxicity in European and African populations

  • Ruowang Li
  • Dokyoon Kim
  • Scott M. Dudek
  • Marylyn D. RitchieEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8602)

Abstract

Genetic variations among individuals account for a large portion of variability in drug response. The underlying mechanism of the variability is still not known, but it is expected to comprise of a wide range of genetic factors that interact and communicate with each other. Here, we present an integrated genome-wide approach to uncover the interactions among genetic factors that can explain some of the inter-individual variation in drug response. The International HapMap consortium generated genotyping data on human lymphoblastoid cell lines of (Center d’Etude du Polymorphisme Humain population - CEU) European descent and (Yoruba population - YRI) African descent. Using genome-wide analysis, Huang et al. identified SNPs that are associated with etoposide, a chemotherapeutic drug, response on the cell lines. Using the same lymphoblastoid cell lines, Fraser et al. generated genome-wide methylation profiles for gene promoter regions. We evaluated associations between candidate SNPs generated by Huang et al and genome-wide methylation sites. The analysis identified a set of methylation sites that are associated with etoposide related SNPs. Using the set of methylation sites and the candidate SNPs, we built an integrated model to explain etoposide response observed in CEU and YRI cell lines. This integrated method can be extended to combine any number of genomics data types to explain many phenotypes of interest.

Keywords

Methylation Level Drug Response Methylation Site Interactive Relationship Candidate SNPs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Huang, R.S., Duan, S., Kistner, E.O., Hartford, C.M., Dolan, M.E.: Genetic variants associated with carboplatin-induced cytotoxicity in cell lines derived from Africans. Mol. Cancer Ther. 7, 3038–3046 (2008)CrossRefGoogle Scholar
  2. 2.
    Huang, R.S., et al.: Genetic variants contributing to daunorubicin-induced cytotoxicity. Cancer Res. 68, 3161–3168 (2008)CrossRefGoogle Scholar
  3. 3.
    Huang, R.S., et al.: Identification of genetic variants contributing to cisplatin-induced cytotoxicity by use of a genomewide approach. Am. J. Hum. Genet. 81, 427–437 (2007)CrossRefGoogle Scholar
  4. 4.
    Gamazon, E.R., Huang, R.S., Cox, N.J., Dolan, M.E.: Chemotherapeutic drug susceptibility associated SNPs are enriched in expression quantitative trait loci. Proc. Natl. Acad. Sci. U. S. A. 107, 9287–9292 (2010)CrossRefGoogle Scholar
  5. 5.
    Huang, R.S., et al.: A genome-wide approach to identify genetic variants that contribute to etoposide-induced cytotoxicity. Proc. Natl. Acad. Sci. U. S. A. 104, 9758–9763 (2007)CrossRefGoogle Scholar
  6. 6.
    The International HapMap Consortium: A haplotype map of the human genome. Nature 437, 1299–13320 (2005)CrossRefGoogle Scholar
  7. 7.
    Fraser, H.B., Lam, L.L., Neumann, S.M., Kobor, M.S.: Population-specificity of human DNA methylation. Genome Biol. 13, R8 (2012)CrossRefGoogle Scholar
  8. 8.
    Sinha, B.K., Haim, N., Dusre, L., Kerrigan, D., Pommier, Y.: DNA strand breaks produced by etoposide (VP-16,213) in sensitive and resistant human breast tumor cells: implications for the mechanism of action. Cancer Res. 48, 5096–5100 (1988)Google Scholar
  9. 9.
    Mistry, A.R., et al.: DNA topoisomerase II in therapy-related acute promyelocytic leukemia. N. Engl. J. Med. 352, 1529–1538 (2005)CrossRefGoogle Scholar
  10. 10.
    Ratain, M.J., et al.: Acute nonlymphocytic leukemia following etoposide and cisplatin combination chemotherapy for advanced non-small-cell carcinoma of the lung. Blood 70, 1412–1417 (1987)Google Scholar
  11. 11.
    Thomson.Micromedex. Drug Inf. Heal. Care Prof. 24th edn. vol. 1, p. 1326 (2004)Google Scholar
  12. 12.
    Holzinger, E., Buchanan, C.: Initialization Parameter Sweep in ATHENA: Optimizing Neural Networks for Detecting Gene-Gene Interactions in the Presence of Small Main Effects. In: Proc. 12th …, pp. 203–210 (2010). doi: 10.1145/1830483.1830519.Initialization
  13. 13.
    Holzinger, E.R., Dudek, S.M., Torstenson, E.C., Ritchie, M.D.: ATHENA Optimization : The Effect of Initial Parameter Settings across Different Genetic Models, pp. 48–58 (2011)Google Scholar
  14. 14.
    Turner, S.D., Dudek, S.M., Ritchie, M.D.: ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci. BioData Min. 3, 5 (2010)CrossRefGoogle Scholar
  15. 15.
    Holzinger, E.R., et al:. Comparison of Methods for Meta-dimensional Data Analysis Using in Silico and Biological Data Sets, pp. 134–143Google Scholar
  16. 16.
    Holzinger, E.R., et al.: ATHENA: a tool for meta-dimensional analysis applied to genotypes and gene expression data to predict HDL cholesterol levels. In: Pac. Symp. Biocomput., pp. 385–96 (2013). http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3587764&tool=pmcentrez&rendertype=abstract
  17. 17.
    Skapura, D.M.: Building neural networks (1995). http://dl.acm.org/citation.cfm?id=217718
  18. 18.
    Koza, J.R., Rice, J.P.: Genetic generation of both the weights and architecture for a neural network. In: IJCNN 1991, Seattle Int. Jt. Conf. Neural Networks ii, pp. 397–404. IEEE (1991)Google Scholar
  19. 19.
    Dunham, I., et al.: An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012)CrossRefGoogle Scholar
  20. 20.
    Westra, H.-J., et al.: Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013)CrossRefGoogle Scholar
  21. 21.
    Liu, X., et al.: Fine-mapping of prostate cancer aggressiveness loci on chromosome 7q22-35. Prostate 71, 682–689 (2011)CrossRefGoogle Scholar
  22. 22.
    Rouget-Quermalet, V., et al.: Protocadherin 15 (PCDH15): a new secreted isoform and a potential marker for NK/T cell lymphomas. Oncogene 25, 2807–2811 (2006)CrossRefGoogle Scholar
  23. 23.
    Salih, M.A., et al.: A newly recognized autosomal recessive syndrome affecting neurologic function and vision. Am. J. Med. Genet. A 161, 1207–1213 (2013)CrossRefGoogle Scholar
  24. 24.
    Akizu, N., et al.: Whole-exome sequencing identifies mutated c12orf57 in recessive corpus callosum hypoplasia. Am. J. Hum. Genet. 92, 392–400 (2013)CrossRefGoogle Scholar
  25. 25.
    Jiang, Y., et al.: Germline PTPRD Mutations in Ewing Sarcoma: Biologic and Clinical Implications. Oncotarget 4, 884–889 (2013)Google Scholar
  26. 26.
    Shah, S.P., et al.: Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461, 809–813 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ruowang Li
    • 1
  • Dokyoon Kim
    • 1
  • Scott M. Dudek
    • 1
  • Marylyn D. Ritchie
    • 1
    Email author
  1. 1.Center for Systems Genomics, 512 WartikThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations