Skip to main content

Reducing the Number of Simulations in Operation Strategy Optimization for Hybrid Electric Vehicles

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8602))

Included in the following conference series:

Abstract

The fuel consumption of a simulation model of a real Hybrid Electric Vehicle is optimized on a standardized driving cycle using metaheuristics (PSO, ES, GA). Search space discretization and metamodels are considered for reducing the number of required, time-expensive simulations. Two hybrid metaheuristics for combining the discussed methods are presented. In experiments it is shown that the use of hybrid metaheuristics with discretization and metamodels can lower the number of required simulations without significant loss in solution quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. April, J., Glover, F., Kelly, J.P., Laguna, M.: Practical introduction to simulation optimization. In: Proceedings of the 2003 of the Winter Simulation Conference, vol. 1, pp. 71–78. IEEE Press (2003)

    Google Scholar 

  2. Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-rithms. pp. 1027–1035. Society for Industrial and Applied Mathematics, Philadelphia (2007)

    Google Scholar 

  3. Bacher, C.: Metaheuristic optimization of electro-hybrid powertrains using machine learning techniques. Master’s thesis, Vienna University of Technology, Vienna, Austria (2013)

    Google Scholar 

  4. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  5. Friedman, J.H.: Stochastic gradient boosting. Computational Statistics and Data Analysis 38, 367–378 (1999)

    Article  Google Scholar 

  6. Friedman, J.H.: Greedy function approximation: A gradient boosting machine. Annals of Statistics 29, 1189–1232 (2000)

    Article  Google Scholar 

  7. Frosyniotis, D., Stafylopatis, A., Likas, A.: A divide-and-conquer method for multi-net classifiers. Pattern Analysis & Applications 6(1), 32–40 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hagan, M., Menhaj, M.: Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks 5(6), 989–993 (1994)

    Article  Google Scholar 

  9. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9, 159–195 (2001)

    Google Scholar 

  10. Hu, X., Wang, Z., Liao, L.: Multi-objective optimization of HEV fuel economy and emissions using evolutionary computation. In: Society of Automotive Engineers World Congress and Exhibition, vol. SP-1856, pp. 117–128 (2004)

    Google Scholar 

  11. Jastrebski, G., Arnold, D.: Improving evolution strategies through active covariance matrix adaptation. In: IEEE Congress on Evolutionary Computation, pp. 2814–2821. IEEE Press (2006)

    Google Scholar 

  12. Jin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with approximate fitness functions. IEEE Transactions on Evolutionary Computation 6(5), 481–494 (2002)

    Article  Google Scholar 

  13. Johnson, V.H., Wipke, K.B., Rausen, D.J.: HEV control strategy for real-time optimization of fuel economy and emissions. Society of Automotive Engineers Transactions 109(3), 1677–1690 (2000)

    Google Scholar 

  14. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE Press (1995)

    Google Scholar 

  15. Krenek, T., Ruthmair, M., Raidl, G.R., Planer, M.: Applying (Hybrid) Metaheuristics to Fuel Consumption Optimization of Hybrid Electric Vehicles. In: Di Chio, C., et al. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 376–385. Springer, Heidelberg (2012)

    Google Scholar 

  16. Mendes-Moreira, J.A., Soares, C., Jorge, A.M., Sousa, J.F.D.: Ensemble approaches for regression: A survey. ACM Comput. Surv. 45(1), 10:1–10:40 (2012)

    Google Scholar 

  17. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intelligence 1(1), 33–57 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Bacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bacher, C., Krenek, T., Raidl, G.R. (2014). Reducing the Number of Simulations in Operation Strategy Optimization for Hybrid Electric Vehicles. In: Esparcia-Alcázar, A., Mora, A. (eds) Applications of Evolutionary Computation. EvoApplications 2014. Lecture Notes in Computer Science(), vol 8602. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45523-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45523-4_45

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45522-7

  • Online ISBN: 978-3-662-45523-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics