Skip to main content

Gas Sorption Using Porous Organic Frameworks

  • Chapter
  • First Online:
Porous Organic Frameworks

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

Abstract

POFs possess high stability, high specific surface area, and adjustable structural framework. Therefore, POFs could be considered as a desired media for gas storage. Specific to the energy and environment fields, it has been documented that POFs are employed in the fields of clean fuels storage, greenhouse gases capture, and pollution elimination. In this chapter, we introduce the application of POFs for hydrogen, methane, carbon dioxide, and small hydrocarbon storage. The factors influencing gas adsorption capacities are discussed and summarized, including the surface area, pore size, pore surface polarity, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dawson R, Cooper A, Adams D (2012) Nanoporous organic polymer networks. Prog Polym Sci 37:530–563

    Article  CAS  Google Scholar 

  2. Xiang Z, Cao D (2013) Porous covalent-organic materials: synthesis, clean energy application and design. J Mater Chem A 1:2691–2718

    Article  CAS  Google Scholar 

  3. Kalidindi S, Fischer R (2013) Covalent organic frameworks and their metal nanoparticle composites: prospects for hydrogen storage. Phys Status Solidi B 250:1119–1127

    Article  CAS  Google Scholar 

  4. IPCC (2007) Summary for policymakers. In: Climate change 2007: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  5. Kim M, Bae Y, Choi D et al (2006) Kinetic separation of landfill gas by a two-bed pressure swing adsorption process packed with carbon molecular sieve: nonisothermal operation. Ind Eng Chem Res 45:5050–5058

    Article  CAS  Google Scholar 

  6. Babarao R, Hu Z, Jiang J et al (2007) Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: a comparative study from Monte Carlo simulation. Langmuir 23:659–666

    Article  CAS  Google Scholar 

  7. Li J, Sculley J, Zhou H (2012) Metal–organic frameworks for separations. Chem Rev 112:869–932

    Article  CAS  Google Scholar 

  8. McKeown N, Budd P (2010) Exploitation of intrinsic microporosity in polymer-based materials. Macromolecules 43:5163–5176

    Article  CAS  Google Scholar 

  9. Zou X, Ren H, Zhu G (2013) Topology-directed design of porous organic frameworks and their advanced applications. Chem Commun 49:3925–3936

    Article  CAS  Google Scholar 

  10. http://www1.eere.energy.gov/hydrogenandfuelcells/storage/currenttechnology.html

  11. Furukawa H, Yaghi O (2009) Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J Am Chem Soc 131:8875–8883

    Article  CAS  Google Scholar 

  12. Li Y, Yang R (2008) Hydrogen storage in metal-organic and covalent-organic frameworks by spillover. AlChE J 54:269–279

    Article  CAS  Google Scholar 

  13. Tilford R, Mugavero S, Pellechia P et al (2008) Tailoring microporosity in covalent organic frameworks. Adv Mater 20:2741–2746

    Article  CAS  Google Scholar 

  14. Rabbani M, Sekizkardes A, Kahveci Z et al (2013) A 2D mesoporous imine-linked covalent organic framework for high pressure gas storage applications. Chem Eur J 19:3324–3328

    Article  CAS  Google Scholar 

  15. Kahveci Z, Islamoglu T, Shar G et al (2013) Targeted synthesis of a mesoporous triptycene-derived covalent organic framework. CrystEngComm 15:1524–1527

    Article  CAS  Google Scholar 

  16. Song J, Sun J, Liu J et al (2014) Thermally/hydrolytically stable covalent organic frameworks from a rigid macrocyclic host. Chem Commun 50:788–791

    Article  CAS  Google Scholar 

  17. McKeown N, Budd P, Book D (2007) Microporous polymers as potential hydrogen storage materials. Macromol Rapid Commun 28:995–1002

    Article  CAS  Google Scholar 

  18. Ghanem B, Msayib K, McKeown N et al (2007) A triptycene-based polymer of intrinsic microposity that displays enhanced surface area and hydrogen adsorption. Chem Commun 67–69

    Google Scholar 

  19. Makhseed S, Samuel J (2008) Hydrogen adsorption in microporous organic framework polymer. Chem Commun 4342–4344

    Google Scholar 

  20. Chen Q, Luo M, Hammershøj et al (2012) Microporous polycarbazole with high specific surface area for gas storage and separation. J Am Chem Soc 134:6084–6087

    Article  CAS  Google Scholar 

  21. Chen Q, Liu D, Luo M et al (2014) Nitrogen-containing microporous conjugated polymers via carbazole-based oxidative coupling polymerization: preparation, porosity, and gas uptake. Small 10:308–315

    Article  CAS  Google Scholar 

  22. Rose M, Böhlmann W, Sabo M et al (2008) Element–organic frameworks with high permanent porosity, Chem Commun 2462–2464

    Google Scholar 

  23. Fritsch J, Rose M, Wollmann P et al (2010) New element organic frameworks based on Sn, Sb, and Bi, with permanent porosity and high catalytic activity. Materials 3:2447–2462

    Article  CAS  Google Scholar 

  24. Jiang J, Su F, Trewin A et al (2008) Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. J Am Chem Soc 130:7710–7720

    Article  CAS  Google Scholar 

  25. Hasell T, Wood C, Clowes R et al (2009) Palladium nanoparticle incorporation in conjugated microporous polymers by supercritical fluid processing. Chem Mater 22:557–564

    Article  Google Scholar 

  26. Li A, Lu R, Wang Y et al (2010) Lithium-doped conjugated microporous polymers for reversible hydrogen storage. Angew Chem Int Ed 49:3330–3333

    Article  CAS  Google Scholar 

  27. Reich T, Jackson K, Li S et al (2011) Synthesis and characterization of highly porous borazine-linked polymers and their performance in hydrogen storage application. J Mater Chem 21:10629–10632

    Article  Google Scholar 

  28. Jackson K, Reich T, El-Kaderi H (2012) Targeted synthesis of a porous borazine-linked covalent organic framework. Chem Commun 48:8823–8825

    Article  CAS  Google Scholar 

  29. Ben T, Pei C, Zhang D et al (2011) Gas storage in porous aromatic frameworks (PAFs). Energy Environ Sci 4:3991–3999

    Article  CAS  Google Scholar 

  30. Ben T, Ren H, Ma S et al (2009) Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew Chem Int Ed 121:9621–9624

    Article  Google Scholar 

  31. Konstas K, Taylor J, Thornton A et al (2012) Lithiated porous aromatic frameworks with exceptional gas storage capacity. Angew Chem Int Ed 124:6743–6746

    Article  Google Scholar 

  32. Yuan D, Lu W, Zhao D et al (2011) Highly stable porous polymer networks with exceptionally high gas-uptake capacities. Adv Mater 23:3723–3725

    Article  CAS  Google Scholar 

  33. Ma H, Ren H, Zou X et al (2013) Novel lithium-loaded porous aromatic framework for efficient CO2 and H2 uptake. J Mater Chem A 1:752–758

    Article  CAS  Google Scholar 

  34. Yuan S, Dorney B, White D et al (2010) Microporous polyphenylenes with tunable pore size for hydrogen storage. Chem Commun 46:4547–4549

    Article  CAS  Google Scholar 

  35. Rabbani M, El-Kaderi H (2012) Synthesis and characterization of porous benzimidazole-linked polymers and their performance in small gas storage and selective uptake. Chem Mater 24:1511–1517

    Article  CAS  Google Scholar 

  36. Lee J, Wood C, Bradshaw D et al (2006) Hydrogen adsorption in microporous hypercrosslinked polymers. Chem Commun 2670–2672

    Google Scholar 

  37. Wood C, Tan B, Trewin A et al (2007) Hydrogen storage in microporous hypercrosslinked organic polymer networks. Chem Mater 19:2034–2048

    Article  CAS  Google Scholar 

  38. Germain J, Fréchet J, Svec F et al (2007) Hypercrosslinked polyanilines with nanoporous structure and high surface area: potential adsorbents for hydrogen storage. J Mater Chem 17:4989–4997

    Article  CAS  Google Scholar 

  39. Germain J, Svec F, Fréchet J (2008) Preparation of size-selective nanoporous polymer networks of aromatic rings: potential adsorbents for hydrogen storage. Chem Mater 20:7069–7076

    Article  CAS  Google Scholar 

  40. Mendoza-Cortés J, Han S, Goddard W III (2012) High H2 uptake in Li-, Na-, K-metalated covalent organic frameworks and metal organic frameworks at 298 K. J Phys Chem A 116:1621–1631

    Article  Google Scholar 

  41. Han S, Mendoza-Cortés J, Goddard Iii W et al (2009) Recent advances on simulation and theory of hydrogen storage in metal–organic frameworks and covalent organic frameworks. Chem Rev 38:1460–1476

    Article  CAS  Google Scholar 

  42. Mendoza-Cortes J, Goddard W III, Furukawa H et al (2012) A covalent organic framework that exceeds the DOE 2015 volumetric target for H2 uptake at 298 K. J Phys Chem Lett 3:2671–2675

    Article  CAS  Google Scholar 

  43. Huang L, Zeng X, Cao D (2014) Tetrahedral node diamondyne frameworks for CO2 adsorption and separation. J Mater Chem A 2:4899–4902

    Article  CAS  Google Scholar 

  44. Zhu Y, Long H, Zhang W (2013) Imine-linked porous polymer frameworks with high small gas (H2, CO2, CH4, C2H2) uptake and CO2/N2 selectivity. Chem Mater 25:1630–1635

    Article  CAS  Google Scholar 

  45. Li L, Ren H, Yuan Y et al (2014) Construction and adsorption properties of porous aromatic frameworks via AlCl3-triggered coupling polymerization. J Mater Chem A 2:11091–11098

    Article  CAS  Google Scholar 

  46. Rabbani M, Reich T, Kassab R et al (2012) High CO2 uptake and selectivity by triptycene-derived benzimidazole-linked polymers. Chem Commun 48:1141–1143

    Article  CAS  Google Scholar 

  47. Wood C, Tan B, Trewin A et al (2008) Microporous organic polymers for methane storage. Adv Mater 20:1916–1921

    Article  CAS  Google Scholar 

  48. Lu W, Yuan D, Zhao D et al (2010) Porous polymer networks: synthesis, porosity, and applications in gas storage/separation. Chem Mater 22:5964–5972

    Article  CAS  Google Scholar 

  49. Arab P, Rabbani M, Sekizkardes A et al (2014) Copper (I)-catalyzed synthesis of nanoporous azo-linked polymers: impact of textural properties on gas storage and selective carbon dioxide capture. Chem Mater 6:1385–1392

    Article  Google Scholar 

  50. Mendoza-Cortés J, Han S, Furukawa H et al (2010) Adsorption mechanism and uptake of methane in covalent organic frameworks: theory and experiment. J Phys Chem A 114:10824–10833

    Article  Google Scholar 

  51. Ma H, Ren H, Zou X et al (2014) Post-metalation of porous aromatic frameworks for highly efficient carbon capture from CO2 + N2 and CH4 + N2 mixtures. Polym Chem 5:144–152

    Article  CAS  Google Scholar 

  52. Sumida K, Rogow D, Mason J et al (2012) Carbon dioxide capture in metal–organic frameworks. Chem Rev 112:724–781

    Article  CAS  Google Scholar 

  53. Liu J, Thallapally P, McGrail B et al (2012) Progress in adsorption-based CO2 capture by metal–organic frameworks. Chem Soc Rev 41:2308–2322

    Article  CAS  Google Scholar 

  54. Rochelle G (2009) Amine Scrubbing for CO2 Capture. Science 325:1652–1654

    Article  CAS  Google Scholar 

  55. Dawson R, Adams D, Cooper A (2011) Chemical tuning of CO2 sorption in robust nanoporous organic polymers. Chem Sci 2:1173–1177

    Article  CAS  Google Scholar 

  56. Lu W, Yuan D, Sculley J et al (2011) Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure. J Am Chem Soc 133:18126–18129

    Article  CAS  Google Scholar 

  57. Lu W, Verdegaal W, Yu J et al (2013) Building multiple adsorption sites in porous polymer networks for carbon capture applications. Energy Environ Sci 6:3559–3564

    Article  CAS  Google Scholar 

  58. Lu W, Sculley J, Yuan D et al (2012) Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. Angew Chem Int Ed 51:7480–7484

    Article  CAS  Google Scholar 

  59. Ben T, Li Y, Zhu L et al (2012) Selective adsorption of carbon dioxide by carbonized porous aromatic framework (PAF). Energy Environ Sci 5:8370–8376

    Article  CAS  Google Scholar 

  60. Magnowski N, Avila A, Lin C et al (2011) Extraction of ethane from natural gas by adsorption on modified ETS-10. Chem Eng Sci 66:1697–1701

    Article  CAS  Google Scholar 

  61. Arruebo M, Coronas J, Menendez M et al (2001) Separation of hydrocarbons from natural gas using silicalite membranes. Sep Purif Tech 25:275–286

    Article  CAS  Google Scholar 

  62. Triebe R, Tezel W, Khulbe K et al (1996) Adsorption of methane, ethane and ethylene on molecular sieve zeolites. Gas Sep Purif 10:81–84

    Article  CAS  Google Scholar 

  63. He Y et al (2012) A robust doubly interpenetrated metal–organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbons. Chem Commun 48:6493–6495

    Article  CAS  Google Scholar 

  64. He Y, Krishna R, Chen B et al (2012) Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons. Energy Environ Sci 5:9107–9120

    Article  CAS  Google Scholar 

  65. Horike S, Inubushi Y, Hori T et al (2012) A solid solution approach to 2D coordination polymers for CH4/CO2 and CH4/C2H6 gas separation: equilibrium and kinetic studies. Chem Sci 3:116–120

    Article  CAS  Google Scholar 

  66. Duan J et al (2013) High CO2/CH4 and C2 hydrocarbons/CH4 selectivity in a chemically robust porous coordination polymer. Adv Funct Mater 23:3525–3530

    Article  CAS  Google Scholar 

  67. Katsoulidis A, Kanatzidis M et al (2012) Mesoporous hydrophobic polymeric organic frameworks with bound surfactants, selective adsorption of C2H6 versus CH4. Chem Mater 24:471–479

    Article  CAS  Google Scholar 

  68. Ma H, Ren H, Meng S et al (2013) Novel porphyrinic porous organic frameworks for high performance separation of small hydrocarbons. Sci Rep 3:2611–2617

    Google Scholar 

  69. Ma H, Ren H, Meng S et al (2013) A 3D microporous covalent organic framework with exceedingly high C3H8/CH4 and C2 hydrocarbon/CH4 selectivity. Chem Commun 49:9773–9775

    Article  CAS  Google Scholar 

  70. Li B, Zhang Y, Krishna R et al (2014) Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane. J Am Chem Soc 36:8654–8660

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangshan Zhu .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Zhu, G., Ren, H. (2015). Gas Sorption Using Porous Organic Frameworks. In: Porous Organic Frameworks. SpringerBriefs in Molecular Science(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45456-5_4

Download citation

Publish with us

Policies and ethics