Skip to main content

Cleavage and Diastereoselective Synthesis of Mono- and Dilignol β-O-4 Model Compounds

  • Conference paper
  • First Online:
Fuels From Biomass: An Interdisciplinary Approach (BrenaRo 2011)

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 129))

Included in the following conference series:

  • 1003 Accesses

Abstract

A short and convenient synthetic pathway affording diastereomerically pure 1,3-dilignols in both their erythro and threo form has been developed. Additionally, H2Ru(CO)(PPh3)3 has been identified as a promising catalyst for the cleavage of lignin model compounds. The greater accessibility of 1,3-dilignols will facilitate future lignin cleavage studies of ruthenium catalysts and other transition metal systems, employing model compounds that closely resemble the β-O-4 linkage within lignin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perlack, R.D., Wright, L.L., Turhollow, A.F., Graham, R.L., Stokes, B.J., Erbach, D.C.: Biomass as feedstock for a bioenergy and bioproducts industy: the technical feasibility of a billion-ton annual supply (2005). doi:10.2172/885984

  2. Hicks, J.C.: Advances in C-O bond transformations in lignin-derived compounds for biofuels production. J. Phys. Chem. Lett. 2, 2280–2287 (2011). doi:10.1021/jz2007885

    Article  MathSciNet  Google Scholar 

  3. Chheda, J.N., Huber, G.W., Dumesic, J.A.: Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem. Int. Ed. 46, 7164–7183 (2007). doi:10.1002/anie.200604274

    Article  Google Scholar 

  4. Corma, A., Iborra, S., Velty, A.: Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007). doi:10.1021/cr050989d

    Article  Google Scholar 

  5. Huber, G.W., Iborra, S., Corma, A.: Synthesis of transportation fuels from biomass: chemistry. Catal. Eng. Chem. Rev. 106, 4044–4098 (2006). doi:10.1021/cr068360d

    Google Scholar 

  6. Huber, G.W., Corma, A.: Synergies between bio- and oil refineries for the production of fuels from biomass. Angew. Chem. Int. Ed. 46, 7184–7201 (2007). doi:10.1002/anie.200604504

    Article  Google Scholar 

  7. Mäki-Arvela, P., Holmbom, P., Salmi, T., Murzin, D.Y.: Recent progress in synthesis of fine and specialty chemicals from wood and other biomass by heterogeneous catalytic processes. Catal. Rev. Sci. 49, 197–340 (2007). doi:10.1080/01614940701313127

  8. Amen-Chen, C., Pakdel, H., Roy, C.: Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresour. Technol. 79, 277–299 (2001). doi:10.1016/S0960-8524(00)00180-2

    Article  Google Scholar 

  9. Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., Weckhuysen, B.M.: The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010). doi:10.1021/cr900354u

    Article  Google Scholar 

  10. Capanema, E.A., Balakshin, M.Y., Kadla, J.F.: A comprehensive approach for quantitative lignin characterization by NMR spectroscopy. J. Agric. Food Chem. 52, 1850–1860 (2004). doi:10.1021/jf035282b

    Article  Google Scholar 

  11. Capanema, E.A., Balakshin, M.Y., Kadla, J.F.: Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy. J. Agric. Food Chem. 53, 9639–9649 (2005). doi:10.1021/jf0515330

    Article  Google Scholar 

  12. Chakar, F.S., Ragauskas, A.J.: Review of current and future softwood kraft liginin process chemistry. Ind. Crops Prod. 20, 131–141 (2004). doi:10.1016/j.indcrop.2004.04.016

    Article  Google Scholar 

  13. Holmgren, A., Brunow, G., Henriksson, G., Zhang, L., Ralph, J.: Non-enzymatic reduction of quinone methides during oxidative coupling of monolignols: implications for the origin of benzyl structures in lignins. J. Org. Biomol. Chem. 4, 3456–3461 (2006). doi:10.1039/b606369a

    Article  Google Scholar 

  14. Rencoret, J., Gisela, M., Gutiérrez, A., Nieto, L., Jiménez-Barbero, J., Martínez, Á.T., del Río, J.C.: Isolation and structural characterization of the milled-wood lignin from Paulownia fortunei wood. Ind. Crops Prod. 30, 137–143 (2009). doi:10.1016/j.indcrop.2009.03.004

    Article  Google Scholar 

  15. Sakakibara, A.: A structural model of softwood lignin. Wood Sci. Technol. 14, 89–100 (1980). doi:10.1007/BF00584038

    Article  Google Scholar 

  16. Zuidema, E., Bolm, C.: A Catalytic Approach to the Depolymerization of Lignin. Poster at The Netherlands conference on chemistry and catalysis, 264 Noordwijkerhout, Netherlands, March 2 (2009)

    Google Scholar 

  17. Zuidema, E., Bolm, C.: A Catalytic Approach to the Depolymerization of Lignin. CaRLa Winterschool, Heidelberg, Germany, March 14–20 (2009)

    Google Scholar 

  18. Johansson, A.J., Zuidema, E., Bolm, C.: On the mechanism of ruthenium-catalyzed formation of hydrogen from alcohols: a DFT study. Chem. Eur. J. 16:13487–13499. doi:10.1002/chem.201000593

  19. Pardini, V.L., Smith, C.Z., Utley, J.H.P., Vargas, R.R., Viertler, H.: Electroorganic reactions. 38. Mechanism of electrooxidative cleavage of lignin model dimers. J. Org. Chem. 56, 7305–7313 (1991). doi:10.1021/jo00026a022

    Article  Google Scholar 

  20. Lee, J.C., Bae, Y.H., Chang, S.-K.: Efficient β-halogenation of carbonyl compounds by N-bromosuccinimide and N-chlorosuccinimde. Bull. Korean Chem. Soc. 24, 407–408 (2003). doi:10.5012/bkcs.2003.24.4.407

    Article  Google Scholar 

  21. Nichols, J.M., Bishop, L.M., Bergman, R.G., Ellman, J.A.: Catalytic C-O bond cleavage of 2-Aryloxy-1-arylethanols and its application to the depolymerization of lignin-related polymers. J. Am. Chem. Soc. 132, 12554–12555 (2010). doi:10.1021/ja106101f

    Article  Google Scholar 

  22. Baciocchi, E., Fabbri, C., Lanzalunga, O.: Lignin peroxidase-catalyzed oxidation of nonphenolic trimeric lignin model compounds: fragmentation reactions in the intermediate radical cations. J. Org. Chem. 68, 9061–9069 (2003). doi:10.1021/jo035052w

    Article  Google Scholar 

  23. Cho, D.W., Parthasarathi, R., Pimentel, A.S., Maestas, G.D., Park, H.J., Yoon, U.C., Dunaway-Mariano, D., Gnanakaran, S., Langan, P., Mariano, P.S.: Nature and kinetic analysis of carbon-carbon bond fragmentation reactions of cation radicals derived from SET-oxidation of lignin model compounds. J. Org. Chem. 75, 6549–6562 (2010). doi:10.1021/jo1012509

    Article  Google Scholar 

  24. Cho, D.W., Latham, J.A., Park, H.J., Yoon, U.C., Langan, P., Dunaway-Mariano, D., Mariano, P.S.: Regioselectivity of enzymatic and photochemical single electron transfer promoted carbon-carbon bond fragmentation reactions of tetrameric lignin model compounds. J. Org. Chem. 76, 2840–2852 (2011). doi:10.1021/jo200253v

    Article  Google Scholar 

  25. Ciofi-Baffoni, S., Banci, L., Brandi, A.: Synthesis of oligomeric mimics of lignin. J. Chem. Soc. Perkin Trans. 19, 3207–3217 (1998). doi:10.1039/A805027I

    Article  Google Scholar 

  26. Nakatsubo, F., Sato, K., Higuchi, T.: Synthesis of guaiacylglycerol-β-guaiacyl ether. Holzforschung 29, 165–168 (1975). doi:10.1515/hfsg.1975.29.5.165

    Article  Google Scholar 

  27. Adler, E., Lindgren, B.O., Saedlén, U.: The beta-guaiacyl ether of alpha-veratrylglycerol as a lignin model. Svensk Papperstidning 55, 245–254 (1952)

    Google Scholar 

  28. Ahvonen, T., Brouno, G., Kristersson, P., Lundquist, K.: Stereoselective syntheses of lignin model compounds of the β-O-4 and β-1 types. Acta Chem. Scand. B37, 845–849 (1983)

    Article  Google Scholar 

  29. Adler, E., Eriksoo, E.: Guaiacylglycerol and its β-guaiacyl ether. Acta Chem. Scand. 9, 341–342 (1955)

    Article  Google Scholar 

  30. Kawai, S., Okita, K., Sugishita, K., Tanaka, A., Ohashi, H.: Simple method for synthesizing phenolic β-O-4 dilignols. J. Wood Sci. 45, 440–443 (1999). doi:10.1007/BF01177919

    Article  Google Scholar 

  31. Kishimoto, T., Uraki, Y., Ubukata, M.: Easy synthesis of β-O-4 type lignin related polymers. Org. Biomol. Chem. 3, 1067–1073 (2005). doi:10.1039/B416699J

    Article  Google Scholar 

  32. Kratzl, K., Kisser, W., Gratzl, J., Silbernagel, H.: Der β-Guajacyläther des Guajacylglycerins, seine Umwandlung in Coniferylaldehyd und verschiedene andere Arylpropanderivate. Monatsh. Chem. 90, 771–782 (1959)

    Article  Google Scholar 

  33. Yokoyama, T., Matsumoto, Y.: Revisiting the mechanism of β-O-4 bond cleavage during acidolysis of lignin. Part 1: kinetics of the formation of enol ether from non-phenolic C6–C2 type model compounds. Holzforschung 62, 164–168 (2008). doi:10.1515/HF.2008.037

    Article  Google Scholar 

  34. Berndtsson, I., Lundquist, K.: On the synthesis of lignin model compounds of the arylglycerol-β-aryl ether type. Acta Chem. Scand. B31, 725–726 (1977)

    Article  Google Scholar 

  35. Chen, X., Ren, X., Peng, K., Pan, X., Chan, A.S.C., Yang, T.K.: A facile enantioselective approach to neolignans. Tetrahedron Asymmetry 14, 701–704 (2003). doi:10.1016/S0957-4166(03)00085-5

    Article  Google Scholar 

  36. Gratzl, J., Fried-Matzka, M., Miksche, G.E.: Two diastereomeric forms of guaiacylglycerol β-(2-methoxyphenyl) ether and of guaiacylglycerol. Acta Chem. Scand. 20, 1038–1043 (1966)

    Article  Google Scholar 

  37. Lundquist, K., Remmerth, S.: New synthetic routes to lignin model compounds of the arylglycerol-β-aryl ether type. Acta Chem. Scand. B29, 276–278 (1975)

    Article  Google Scholar 

  38. Pearl, I.A., Gratzl, J.: Lignin and related products. XVI. Synthesis of lignin model compounds of the phenylglycerol β-ether and related series. J. Org. Chem. 27, 2111–2114 (1962). doi:10.1021/jo01053a051

    Article  Google Scholar 

  39. Helm, R.F., Ralph, J.: Stereospecificity for the zinc borohydride reduction of α-aryloxy-β-hydroxy ketones. J. Wood Chem. Technol. 13, 593–601 (1993). doi:10.1080/02773819308020536

    Article  Google Scholar 

  40. Helm, R.F., Li, K.: Complete threo-stereoselectivity for the preparation of β-O-4 lignin model dimers. Holzforschung 49, 533–536 (1995)

    Article  Google Scholar 

  41. Buendia, J., Mottweiler, J., Bolm, C.: Preparation of diastereomerically pure dilignol model compounds. Chem. Eur. J. 17, 13877–13882 (2011). doi:10.1002/chem.201101579

    Article  Google Scholar 

  42. Son, S., Toste, F.D.: Non-oxidative vanadium-catalyzed C–O bond cleavage: application to degradation of lignin model compounds. Angew. Chem. Int. Ed. 49, 3791–3794 (2010). doi:10.1002/anie.201001293

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Fonds der Chemischen Industrie and the Cluster of Excellence (Tailor-Made Fuels from Biomass) funded by the Excellence Initiative of the German federal and state governments for their financial support. J.M. thanks the NRW Graduate School BrenaRo for a predoctoral stipend.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Bolm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mottweiler, J., Buendia, J., Zuidema, E., Bolm, C. (2015). Cleavage and Diastereoselective Synthesis of Mono- and Dilignol β-O-4 Model Compounds. In: Klaas, M., Pischinger, S., Schröder, W. (eds) Fuels From Biomass: An Interdisciplinary Approach. BrenaRo 2011. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45425-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45425-1_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45424-4

  • Online ISBN: 978-3-662-45425-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics