Harman, D.: The NRRC Reliable Information Access (RIA) Workshop. In: 27th Annual International ACM SIGIR Conference, Sheffield, UK, July 25-39 (2004)
Google Scholar
Harman, D.: What we have learned, and not learned, from TREC. In: Proceedings of the 22nd Annual Colloquium on Information Retrieval Research, Cambridge, England, pp. 2–21 (April 2000)
Google Scholar
Metzler, D., Croft, W.B.: Combining the Language Model and Inference Network Approaches to Retrieval. Information Processing and Management Special Issue on Bayesian Networks and Information Retrieval 40(5), 735–750 (2004)
Google Scholar
Metzler, D., Strohman, T., Turtle, H., Croft, W.B.: Indri at TREC 2004: Terabyte Track. In: TREC 2004 (2004)
Google Scholar
Crestani, F., De Campos, L.M., Fernández-Luna, J.M., Huete, J.F.: A Multi-layered Bayesian Network Model for Structured Document Retrieval. In: Nielsen, T.D., Zhang, N.L. (eds.) ECSQARU 2003. LNCS (LNAI), vol. 2711, pp. 74–86. Springer, Heidelberg (2003)
CrossRef
Google Scholar
Turtle, H., Croft, W.: Evaluation of an inference network-based retrieval model. ACM Transactions on Information Systems 9(3), 187–222 (1991)
CrossRef
Google Scholar
Silva, I., Ribeiro-Neto, B., Calado, P., Moura, E., Ziviani, N.: Link-based and content-based evidential information in a belief network model. In: Proceedings of the 23th ACM–SIGIR Conference, pp. 96–103 (2000)
Google Scholar
Robertson, S., Zaragoza, H.: The Probabilistic Relevance Framework: BM25 and Beyond. Foundations and Trends in Information Retrieval 3(4), 333–389 (2009)
CrossRef
Google Scholar
Song, S.-K., Myaeng, S.H.: A Novel Term Weighting Scheme Based on Discrimination Power Obtained from Past Retrieval Results. Information Processing & Management 48(5), 919–930 (2012)
CrossRef
Google Scholar
Li, Q., Lee, S., Jung, H., Lee, Y.S., Cho, J.H., Song, S.-K.: “Term weighting for information retrieval based on term’s discrimination power. Multimedia Tools and Applications 71(2), 769–781 (2014)
CrossRef
Google Scholar
Song, S.-K., Lee, S., Jung, H.: Methodology for Analyzing Search Engine Modules using Bayesian Inference Network. Journal of KIISE 40(5), 277–282 (2013)
Google Scholar