Failure-Proof Spatio-temporal Composition of Sensor Cloud Services

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8831)


We propose a new failure-proof composition model for Sensor-Cloud services based on dynamic features such as spatio-temporal aspects. To evaluate Sensor-Cloud services, a novel spatio-temporal quality model is introduced. We present a new failure-proof composition algorithm based on D* Lite to handle QoS changes of Sensor-Cloud services at run-time. Analytical and simulation results are presented to show the performance of the proposed approach.


Spatio-temporal Sensor-Cloud service spatio-temporal composition Sensor-Cloud service composition spatio-temporal QoS service re-composition 


  1. 1.
    Hossain, M.A.: A survey on sensor-cloud: architecture, applications, and approaches. International Journal of Distributed Sensor Networks (2013)Google Scholar
  2. 2.
    Lee, K., Murray, D., Hughes, D., Joosen, W.: Extending sensor networks into the cloud using amazon web services. In: 2010 IEEE International Conference on Networked Embedded Systems for Enterprise Applications (NESEA), pp. 1–7. IEEE Press (2010)Google Scholar
  3. 3.
    Rajesh, V., Gnanasekar, J., Ponmagal, R., Anbalagan, P.: Integration of wireless sensor network with cloud. In: 2010 International Conference on Recent Trends in Information, Telecommunication and Computing (ITC), pp. 321–323. IEEE Press (2010)Google Scholar
  4. 4.
    Carey, M.J., Onose, N., Petropoulos, M.: Data services. Communications of the ACM 55(6), 86–97 (2012)CrossRefGoogle Scholar
  5. 5.
    Ben Mabrouk, N., Beauche, S., Kuznetsova, E., Georgantas, N., Issarny, V.: Qos-aware service composition in dynamic service oriented environments. In: Bacon, J.M., Cooper, B.F. (eds.) Middleware 2009. LNCS, vol. 5896, pp. 123–142. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Koenig, S., Likhachev, M.: D* lite. In: AAAI/IAAI, pp. 476–483 (2002)Google Scholar
  7. 7.
    Ghari Neiat, A., Bouguettaya, A., Sellis, T., Ye, Z.: Spatio-temporal composition of sensor cloud services. In: 21th IEEE International Conference on Web Services (ICWS), pp. 241–248. IEEE Press (2014)Google Scholar
  8. 8.
    Theoderidis, Y., Vazirgiannis, M., Sellis, T.: Spatio-temporal indexing for large multimedia applications. In: Proceedings of the Third IEEE International Conference on Multimedia Computing and Systems, pp. 441–448. IEEE Press (1996)Google Scholar
  9. 9.
    Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: Qos-aware middleware for web services composition. IEEE Transactions on Software Engineering 30(5), 311–327 (2004)CrossRefGoogle Scholar
  10. 10.
    Koenig, S., Likhachev, M.: Improved fast replanning for robot navigation in unknown terrain. In: IEEE International Conference on Robotics and Automation, pp. 968–975 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Computer Science and Information TechnologyRMITAustralia

Personalised recommendations