Skip to main content

Sandblasted and Acid-Etched Implant Surfaces With or Without High Surface Free Energy: Experimental and Clinical Background

  • Chapter
  • First Online:
Implant Surfaces and their Biological and Clinical Impact

Abstract

The scientifically most investigated technique for creating a micro-rough surface topography on dental implants is the sandblasting and acid-etching procedure, creating the well-known, moderately rough SLA surface topography. The sandblasting procedure induces a macro-rough surface topography and is followed by an acid-etching procedure that superimposes the micro-rough topography. This SLA surface can be produced on commercially pure titanium as well as on titanium-zirconium alloys or on zirconium dioxide ceramics. In recent years, this hydrophobic SLA surface has been further developed, by a completely new and elaborated production process, creating a similar SLA topography but with increased chemical activity resulting in surface hydrophilicity and surface energy (modSLA surface). In vitro studies have shown that osteoblasts grown on the SLA surface exhibit properties of highly differentiated bone cells, which suggest that this surface is more osteoconductive compared to smoother surfaces. Compared to SLA, modSLA titanium surfaces further decreased cell proliferation and osteoclast activity and additionally enhanced osteoblastic cell differentiation and production of angiogenic factors. In vivo studies have demonstrated that, in comparison to implants with turned/machined surfaces, the increased roughness topography enhances bone tissue responses, such as greater bone–implant contact (BIC) and increased removal torque-out values (RTQ). These implants with increased surface hydrophilicity revealed accelerated bone (significantly increased BIC, RTQ) and soft tissue healing within the first 4 weeks after placement compared to implants with an SLA surface. Clinically, it has been shown that implants with an SLA surface topography can be successfully loaded 6–8 weeks after implant placement, thus, significantly reducing the healing period compared to implants with a turned or machined surface topography. With regard to the modSLA surface, it has been demonstrated that implants can successfully be loaded immediately or 3–6 weeks after placement, thus, further reducing the healing time. The SLA as well as the modSLA implant surface revealed comparable survival and success rates of more than 95 % up to and after 3 years of investigation; however, for SLA, also similar survival and success rates up to and after 10 years are available. Thus, both types of implant surfaces (SLA and modSLA) show highly successful comparable clinical outcomes; however, the modSLA surfaces allow for earlier bone and soft tissue healing and implant loading without compromising the overall survival and success rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albrektsson T, Branemark PI, Hansson HA, Lindstrom J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand. 1981;52(2):155–70.

    PubMed  Google Scholar 

  2. Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL, et al. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A. 2005;74(1):49–58.

    PubMed  Google Scholar 

  3. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res. 1991;25(7):889–902.

    PubMed  Google Scholar 

  4. Buser D, Nydegger T, Oxland T, Cochran DL, Schenk RK, Hirt HP, et al. Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs. J Biomed Mater Res. 1999;45(2):75–83.

    PubMed  Google Scholar 

  5. Buser D, Janner SF, Wittneben JG, Bragger U, Ramseier CA, Salvi GE. 10-year survival and success rates of 511 titanium implants with a sandblasted and acid-etched surface: a retrospective study in 303 partially edentulous patients. Clin Implant Dent Relat Res. 2012;14(6):839–51.

    PubMed  Google Scholar 

  6. Zhang EW, Wang YB, Shuai KG, Gao F, Bai YJ, Cheng Y, et al. In vitro and in vivo evaluation of SLA titanium surfaces with further alkali or hydrogen peroxide and heat treatment. Biomed Mater. 2011;6(2):025001.

    PubMed  Google Scholar 

  7. Funato A, Yamada M, Ogawa T. Success rate, healing time, and implant stability of photofunctionalized dental implants. Int J Oral Maxillofac Implants. 2013;28(5):1261–71.

    PubMed  Google Scholar 

  8. Att W, Ogawa T. Biological aging of implant surfaces and their restoration with ultraviolet light treatment: a novel understanding of osseointegration. Int J Oral Maxillofac Implants. 2012;27(4):753–61.

    PubMed  Google Scholar 

  9. Tugulu S, Lowe K, Scharnweber D, Schlottig F. Preparation of superhydrophilic microrough titanium implant surfaces by alkali treatment. J Mater Sci Mater Med. 2010;21(10):2751–63.

    PubMed  Google Scholar 

  10. Stadlinger B, Lode AT, Eckelt U, Range U, Schlottig F, Hefti T, et al. Surface-conditioned dental implants: an animal study on bone formation. J Clin Periodontol. 2009;36(10):882–91.

    PubMed  Google Scholar 

  11. Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, et al. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res. 2004;83(7):529–33.

    PubMed  Google Scholar 

  12. Rupp F, Scheideler L, Olshanska N, de Wild M, Wieland M, Geis-Gerstorfer J. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. J Biomed Mater Res A. 2006;76(2):323–34.

    PubMed  Google Scholar 

  13. Grandin HM, Berner S, Dard M. A review of Titanium Zirconium (TiZr) alloys for use in endosseous dental implants. Materials. 2012;5(8):1348–60.

    Google Scholar 

  14. Buser D, Nydegger T, Hirt HP, Cochran DL, Nolte LP. Removal torque values of titanium implants in the maxilla of miniature pigs. Int J Oral Maxillofac Implants. 1998;13(5):611–9.

    PubMed  Google Scholar 

  15. Martin JY, Schwartz Z, Hummert TW, Schraub DM, Simpson J, Lankford Jr J, et al. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J Biomed Mater Res. 1995;29(3):389–401.

    PubMed  Google Scholar 

  16. Cochran DL, Nummikoski PV, Higginbottom FL, Hermann JS, Makins SR, Buser D. Evaluation of an endosseous titanium implant with a sandblasted and acid-etched surface in the canine mandible: radiographic results. Clin Oral Implants Res. 1996;7(3):240–52.

    PubMed  Google Scholar 

  17. Lossdorfer S, Schwartz Z, Wang L, Lohmann CH, Turner JD, Wieland M, et al. Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity. J Biomed Mater Res A. 2004;70(3):361–9.

    PubMed  Google Scholar 

  18. Wennerberg A, Albrektsson T. Suggested guidelines for the topographic evaluation of implant surfaces. Int J Oral Maxillofac Implants. 2000;15(3):331–44.

    PubMed  Google Scholar 

  19. Sammons RL, Lumbikanonda N, Gross M, Cantzler P. Comparison of osteoblast spreading on microstructured dental implant surfaces and cell behaviour in an explant model of osseointegration. A scanning electron microscopic study. Clin Oral Implants Res. 2005;16(6):657–66.

    PubMed  Google Scholar 

  20. Taborelli M, Jobin M, Francois P, Vaudaux P, Tonetti M, Szmukler-Moncler S, et al. Influence of surface treatments developed for oral implants on the physical and biological properties of titanium. (I) surface characterization. Clin Oral Implants Res. 1997;8(3):208–16.

    PubMed  Google Scholar 

  21. Szmukler-Moncler S, Bischof M, Nedir R, Ermrich M. Titanium hydride and hydrogen concentration in acid-etched commercially pure titanium and titanium alloy implants: a comparative analysis of five implant systems. Clin Oral Implants Res. 2010;21(9):944–50.

    PubMed  Google Scholar 

  22. Szmukler-Moncler S, Simpson JP. Physicochemical characterization of a titanium textured surface prepared by sandblasting and acid etching. Transactions of the 5th World Biomaterials congress, 29 May–2 June, Toronto; 1996. p. 837.

    Google Scholar 

  23. Perrin D, Szmukler-Moncler S, Echikou C, Pointaire P, Bernard JP. Bone response to alteration of surface topography and surface composition of sandblasted and acid etched (SLA) implants. Clin Oral Implants Res. 2002;13(5):465–9.

    PubMed  Google Scholar 

  24. Szmukler-Moncler S, Perrin D, Ahossi V, Magnin G, Bernard JP. Biological properties of acid etched titanium implants: effect of sandblasting on bone anchorage. J Biomed Mater Res B Appl Biomater. 2004;68(2):149–59.

    PubMed  Google Scholar 

  25. Kang BS, Sul YT, Oh SJ, Lee HJ, Albrektsson T. XPS, AES and SEM analysis of recent dental implants. Acta Biomater. 2009;5(6):2222–9.

    PubMed  Google Scholar 

  26. Gahlert M, Burtscher D, Grunert I, Kniha H, Steinhauser E. Failure analysis of fractured dental zirconia implants. Clin Oral Implants Res. 2012;23(3):287–93.

    PubMed  Google Scholar 

  27. Osman RB, Ma S, Duncan W, De Silva RK, Siddiqi A, Swain MV. Fractured zirconia implants and related implant designs: scanning electron microscopy analysis. Clin Oral Implants Res. 2013;24(5):592–7.

    PubMed  Google Scholar 

  28. Gahlert M, Rohling S, Wieland M, Sprecher CM, Kniha H, Milz S. Osseointegration of zirconia and titanium dental implants: a histological and histomorphometrical study in the maxilla of pigs. Clin Oral Implants Res. 2009;20(11):1247–53.

    PubMed  Google Scholar 

  29. Gahlert M, Rohling S, Wieland M, Eichhorn S, Kuchenhoff H, Kniha H. A comparison study of the osseointegration of zirconia and titanium dental implants. A biomechanical evaluation in the maxilla of pigs. Clin Implant Dent Relat Res. 2010;12(4):297–305.

    PubMed  Google Scholar 

  30. Gahlert M, Roehling S, Sprecher CM, Kniha H, Milz S, Bormann K. In vivo performance of zirconia and titanium implants: a histomorphometric study in mini pig maxillae. Clin Oral Implants Res. 2012;23(3):281–6.

    PubMed  Google Scholar 

  31. Bormann KH, Gellrich NC, Kniha H, Dard M, Wieland M, Gahlert M. Biomechanical evaluation of a microstructured zirconia implant by a removal torque comparison with a standard Ti-SLA implant. Clin Oral Implants Res. 2012;23(10):1210–6.

    PubMed  Google Scholar 

  32. Schwartz Z, Boyan BD. Underlying mechanisms at the bone-biomaterial interface. J Cell Biochem. 1994;56(3):340–7.

    PubMed  Google Scholar 

  33. Kieswetter K, Schwartz Z, Dean DD, Boyan BD. The role of implant surface characteristics in the healing of bone. Crit Rev Oral Biol Med Off Publ Am Assoc Oral Biologist. 1996;7(4):329–45.

    Google Scholar 

  34. Baschong W, Jaquiery C, Martin I, Lambrecht TJ. Surface-induced modulation of human mesenchymal progenitor cells. An in vitro model for early implant integration. Schweiz Monatsschr Zahnmed. 2007;117(9):906–10.

    PubMed  Google Scholar 

  35. Davies JE. Understanding peri-implant endosseous healing. J Dent Educ. 2003;67(8):932–49.

    PubMed  Google Scholar 

  36. Marco F, Milena F, Gianluca G, Vittoria O. Peri-implant osteogenesis in health and osteoporosis. Micron. 2005;36(7–8):630–44.

    PubMed  Google Scholar 

  37. Orsini G, Assenza B, Scarano A, Piattelli M, Piattelli A. Surface analysis of machined versus sandblasted and acid-etched titanium implants. Int J Oral Maxillofac Implants. 2000;15(6):779–84.

    PubMed  Google Scholar 

  38. Zinger O, Anselme K, Denzer A, Habersetzer P, Wieland M, Jeanfils J, et al. Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials. 2004;25(14):2695–711.

    PubMed  Google Scholar 

  39. Bowers KT, Keller JC, Randolph BA, Wick DG, Michaels CM. Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Implants. 1992;7(3):302–10.

    PubMed  Google Scholar 

  40. Schwartz Z, Lohmann CH, Oefinger J, Bonewald LF, Dean DD, Boyan BD. Implant surface characteristics modulate differentiation behavior of cells in the osteoblastic lineage. Adv Dent Res. 1999;13:38–48.

    PubMed  Google Scholar 

  41. Boyan BD, Batzer R, Kieswetter K, Liu Y, Cochran DL, Szmuckler-Moncler S, et al. Titanium surface roughness alters responsiveness of MG63 osteoblast-like cells to 1 alpha,25-(OH)2D3. J Biomed Mater Res. 1998;39(1):77–85.

    PubMed  Google Scholar 

  42. Martin JY, Dean DD, Cochran DL, Simpson J, Boyan BD, Schwartz Z. Proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63) cultured on previously used titanium surfaces. Clin Oral Implants Res. 1996;7(1):27–37.

    PubMed  Google Scholar 

  43. Kieswetter K, Schwartz Z, Hummert TW, Cochran DL, Simpson J, Dean DD, et al. Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. J Biomed Mater Res. 1996;32(1):55–63.

    PubMed  Google Scholar 

  44. Lohmann CH, Bonewald LF, Sisk MA, Sylvia VL, Cochran DL, Dean DD, et al. Maturation state determines the response of osteogenic cells to surface roughness and 1,25-dihydroxyvitamin D3. J Bone Miner Res. 2000;15(6):1169–80.

    PubMed  Google Scholar 

  45. Schwartz Z, Lohmann CH, Sisk M, Cochran DL, Sylvia VL, Simpson J, et al. Local factor production by MG63 osteoblast-like cells in response to surface roughness and 1,25-(OH)2D3 is mediated via protein kinase C- and protein kinase A-dependent pathways. Biomaterials. 2001;22(7):731–41.

    PubMed  Google Scholar 

  46. Ogawa T, Nishimura I. Different bone integration profiles of turned and acid-etched implants associated with modulated expression of extracellular matrix genes. Int J Oral Maxillofac Implants. 2003;18(2):200–10.

    PubMed  Google Scholar 

  47. Brinkmann J, Hefti T, Schlottig F, Spencer ND, Hall H. Response of osteoclasts to titanium surfaces with increasing surface roughness: an in vitro study. Biointerphases. 2012;7(1–4):34.

    PubMed  Google Scholar 

  48. Thomas KA, Cook SD. An evaluation of variables influencing implant fixation by direct bone apposition. J Biomed Mater Res. 1985;19(8):875–901.

    PubMed  Google Scholar 

  49. Carlsson L, Rostlund T, Albrektsson B, Albrektsson T. Removal torques for polished and rough titanium implants. Int J Oral Maxillofac Implants. 1988;3(1):21–4.

    PubMed  Google Scholar 

  50. Cochran DL, Schenk RK, Lussi A, Higginbottom FL, Buser D. Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: a histometric study in the canine mandible. J Biomed Mater Res. 1998;40(1):1–11.

    PubMed  Google Scholar 

  51. Li D, Ferguson SJ, Beutler T, Cochran DL, Sittig C, Hirt HP, et al. Biomechanical comparison of the sandblasted and acid-etched and the machined and acid-etched titanium surface for dental implants. J Biomed Mater Res. 2002;60(2):325–32.

    PubMed  Google Scholar 

  52. Lang NP, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Bosshardt DD. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res. 2011;22(4):349–56.

    PubMed  Google Scholar 

  53. Roccuzzo M, Aglietta M, Bunino M, Bonino L. Early loading of sandblasted and acid-etched implants: a randomized-controlled double-blind split-mouth study. Five-year results. Clin Oral Implants Res. 2008;19(2):148–52.

    PubMed  Google Scholar 

  54. Wong M, Eulenberger J, Schenk R, Hunziker E. Effect of surface topology on the osseointegration of implant materials in trabecular bone. J Biomed Mater Res. 1995;29(12):1567–75.

    PubMed  Google Scholar 

  55. Arlin ML. Survival and success of sandblasted, large-grit, acid-etched and titanium plasma-sprayed implants: a retrospective study. Journal. 2007;73(9):821.

    Google Scholar 

  56. Carmagnola D, Abati S, Addis A, Ferrieri G, Chiapasco M, Romeo E, et al. Time sequence of bone healing around two implant systems in minipigs: preliminary histologic results. Int J Periodontics Restorative Dent. 2009;29(5):549–55.

    PubMed  Google Scholar 

  57. Botticelli D, Berglundh T, Buser D, Lindhe J. Appositional bone formation in marginal defects at implants. Clin Oral Implants Res. 2003;14(1):1–9.

    PubMed  Google Scholar 

  58. Botticelli D, Berglundh T, Persson LG, Lindhe J. Bone regeneration at implants with turned or rough surfaces in self-contained defects. An experimental study in the dog. J Clin Periodontol. 2005;32(5):448–55.

    PubMed  Google Scholar 

  59. Botticelli D, Berglundh T, Lindhe J. The influence of a biomaterial on the closure of a marginal hard tissue defect adjacent to implants. An experimental study in the dog. Clin Oral Implants Res. 2004;15(3):285–92.

    PubMed  Google Scholar 

  60. Botticelli D, Berglundh T, Lindhe J. Resolution of bone defects of varying dimension and configuration in the marginal portion of the peri-implant bone. An experimental study in the dog. J Clin Periodontol. 2004;31(4):309–17.

    PubMed  Google Scholar 

  61. Botticelli D, Berglundh T, Buser D, Lindhe J. The jumping distance revisited: an experimental study in the dog. Clin Oral Implants Res. 2003;14(1):35–42.

    PubMed  Google Scholar 

  62. Freilich M, Shafer D, Wei M, Kompalli R, Adams D, Kuhn L. Implant system for guiding a new layer of bone. Computed microtomography and histomorphometric analysis in the rabbit mandible. Clin Oral Implants Res. 2009;20(2):201–7.

    PubMed  Google Scholar 

  63. Carmagnola D, Abati S, Celestino S, Chiapasco M, Bosshardt D, Lang NP. Oral implants placed in bone defects treated with Bio-Oss, Ostim-Paste or PerioGlas: an experimental study in the rabbit tibiae. Clin Oral Implants Res. 2008;19(12):1246–53.

    PubMed  Google Scholar 

  64. de Vicente JC, Recio O, Martin-Villa L, Junquera LM, Lopez-Arranz JS. Histomorphometric evaluation of guided bone regeneration around implants with SLA surface: an experimental study in beagle dogs. Int J Oral Maxillofac Surg. 2006;35(11):1047–53.

    PubMed  Google Scholar 

  65. Retzepi M, Lewis MP, Donos N. Effect of diabetes and metabolic control on de novo bone formation following guided bone regeneration. Clin Oral Implants Res. 2010;21(1):71–9.

    PubMed  Google Scholar 

  66. Bornstein MM, Valderrama P, Jones AA, Wilson TG, Seibl R, Cochran DL. Bone apposition around two different sandblasted and acid-etched titanium implant surfaces: a histomorphometric study in canine mandibles. Clin Oral Implants Res. 2008;19(3):233–41.

    PubMed  Google Scholar 

  67. Botticelli D, Berglundh T, Lindhe J. Hard-tissue alterations following immediate implant placement in extraction sites. J Clin Periodontol. 2004;31(10):820–8.

    PubMed  Google Scholar 

  68. Barewal RM, Oates TW, Meredith N, Cochran DL. Resonance frequency measurement of implant stability in vivo on implants with a sandblasted and acid-etched surface. Int J Oral Maxillofac Implants. 2003;18(5):641–51.

    PubMed  Google Scholar 

  69. Pinholt EM. Branemark and ITI dental implants in the human bone-grafted maxilla: a comparative evaluation. Clin Oral Implants Res. 2003;14(5):584–92.

    PubMed  Google Scholar 

  70. Stricker A, Voss PJ, Gutwald R, Schramm A, Schmelzeisen R. Maxillary sinus floor augmention with autogenous bone grafts to enable placement of SLA-surfaced implants: preliminary results after 15–40 months. Clin Oral Implants Res. 2003;14(2):207–12.

    PubMed  Google Scholar 

  71. Cochran DL, Buser D, ten Bruggenkate CM, Weingart D, Taylor TM, Bernard JP, et al. The use of reduced healing times on ITI implants with a sandblasted and acid-etched (SLA) surface: early results from clinical trials on ITI SLA implants. Clin Oral Implants Res. 2002;13(2):144–53.

    PubMed  Google Scholar 

  72. Bornstein MM, Lussi A, Schmid B, Belser UC, Buser D. Early loading of nonsubmerged titanium implants with a sandblasted and acid-etched (SLA) surface: 3-year results of a prospective study in partially edentulous patients. Int J Oral Maxillofac Implants. 2003;18(5):659–66.

    PubMed  Google Scholar 

  73. Buser D, Belser UC, Lang NP. The original one-stage dental implant system and its clinical application. Periodontology 2000. 1998;17:106–18.

    PubMed  Google Scholar 

  74. Roccuzzo M, Wilson T. A prospective study evaluating a protocol for 6 weeks’ loading of SLA implants in the posterior maxilla: one year results. Clin Oral Implants Res. 2002;13(5):502–7.

    PubMed  Google Scholar 

  75. Cochran DL. The scientific basis for and clinical experiences with Straumann implants including the ITI dental implant system: a consensus report. Clin Oral Implants Res. 2000;11 Suppl 1:33–58.

    PubMed  Google Scholar 

  76. Bornstein MM, Schmid B, Belser UC, Lussi A, Buser D. Early loading of non-submerged titanium implants with a sandblasted and acid-etched surface. 5-year results of a prospective study in partially edentulous patients. Clin Oral Implants Res. 2005;16(6):631–8.

    PubMed  Google Scholar 

  77. Salvi GE, Gallini G, Lang NP. Early loading (2 or 6 weeks) of sandblasted and acid-etched (SLA) ITI implants in the posterior mandible. A 1-year randomized controlled clinical trial. Clin Oral Implants Res. 2004;15(2):142–9.

    PubMed  Google Scholar 

  78. Quinlan P, Nummikoski P, Schenk R, Cagna D, Mellonig J, Higginbottom F, et al. Immediate and early loading of SLA ITI single-tooth implants: an in vivo study. Int J Oral Maxillofac Implants. 2005;20(3):360–70.

    PubMed  Google Scholar 

  79. Cornelini R, Cangini F, Covani U, Barone A, Buser D. Immediate restoration of single-tooth implants in mandibular molar sites: a 12-month preliminary report. Int J Oral Maxillofac Implants. 2004;19(6):855–60.

    PubMed  Google Scholar 

  80. Bergkvist G, Sahlholm S, Karlsson U, Nilner K, Lindh C. Immediately loaded implants supporting fixed prostheses in the edentulous maxilla: a preliminary clinical and radiologic report. Int J Oral Maxillofac Implants. 2005;20(3):399–405.

    PubMed  Google Scholar 

  81. Luongo G, Di Raimondo R, Filippini P, Gualini F, Paoleschi C. Early loading of sandblasted, acid-etched implants in the posterior maxilla and mandible: a 1-year follow-up report from a multicenter 3-year prospective study. Int J Oral Maxillofac Implants. 2005;20(1):84–91.

    PubMed  Google Scholar 

  82. Tortamano P, Orii TC, Yamanochi J, Nakamae AE, Guarnieri Tde C. Outcomes of fixed prostheses supported by immediately loaded endosseous implants. Int J Oral Maxillofac Implants. 2006;21(1):63–70.

    PubMed  Google Scholar 

  83. Fischer K, Stenberg T. Three-year data from a randomized, controlled study of early loading of single-stage dental implants supporting maxillary full-arch prostheses. Int J Oral Maxillofac Implants. 2006;21(2):245–52.

    PubMed  Google Scholar 

  84. Stricker A, Gutwald R, Schmelzeisen R, Gellrich NG. Immediate loading of 2 interforaminal dental implants supporting an overdenture: clinical and radiographic results after 24 months. Int J Oral Maxillofac Implants. 2004;19(6):868–72.

    PubMed  Google Scholar 

  85. Boyan BD, Bonewald LF, Paschalis EP, Lohmann CH, Rosser J, Cochran DL, et al. Osteoblast-mediated mineral deposition in culture is dependent on surface microtopography. Calcif Tissue Int. 2002;71(6):519–29.

    PubMed  Google Scholar 

  86. Cochran DL. A comparison of endosseous dental implant surfaces. J Periodontol. 1999;70(12):1523–39.

    PubMed  Google Scholar 

  87. Cochran D, Oates T, Morton D, Jones A, Buser D, Peters F. Clinical field trial examining an implant with a sand-blasted, acid-etched surface. J Periodontol. 2007;78(6):974–82.

    PubMed  Google Scholar 

  88. Roccuzzo M, Bonino L, Dalmasso P, Aglietta M. Long-term results of a three arms prospective cohort study on implants in periodontally compromised patients: 10-year data around sandblasted and acid-etched (SLA) surface. Clin Oral Implants Res. 2014;25(10):1105–12.

    PubMed  Google Scholar 

  89. Fischer K, Stenberg T. Prospective 10-year cohort study based on a randomized controlled trial (RCT) on implant-supported full-arch maxillary prostheses. Part 1: sandblasted and acid-etched implants and mucosal tissue. Clin Implant Dent Relat Res. 2012;14(6):808–15.

    PubMed  Google Scholar 

  90. Cochran DL, Jackson JM, Bernard JP, ten Bruggenkate CM, Buser D, Taylor TD, et al. A 5-year prospective multicenter study of early loaded titanium implants with a sandblasted and acid-etched surface. Int J Oral Maxillofac Implants. 2011;26(6):1324–32.

    PubMed  Google Scholar 

  91. Dam HG, Najm SA, Nurdin N, Bischof M, Finkelman M, Nedir R. A 5- to 6-year radiological evaluation of titanium plasma sprayed/sandblasted and acid-etched implants: results from private practice. Clin Oral Implants Res. 2014;25(2):e159–65.

    PubMed  Google Scholar 

  92. Lethaus B, Kalber J, Petrin G, Brandstatter A, Weingart D. Early loading of sandblasted and acid-etched titanium implants in the edentulous mandible: a prospective 5-year study. Int J Oral Maxillofac Implants. 2011;26(4):887–92.

    PubMed  Google Scholar 

  93. Baker D, London RM, O’Neal R. Rate of pull-out strength gain of dual-etched titanium implants: a comparative study in rabbits. Int J Oral Maxillofac Implants. 1999;14(5):722–8.

    PubMed  Google Scholar 

  94. Cochran DL, Jackson JM, Jones AA, Jones JD, Kaiser DA, Taylor TD, et al. A 5-year prospective multicenter clinical trial of non-submerged dental implants with a titanium plasma-sprayed surface in 200 patients. J Periodontol. 2011;82(7):990–9.

    PubMed  Google Scholar 

  95. van Steenberghe D, Jacobs R, Desnyder M, Maffei G, Quirynen M. The relative impact of local and endogenous patient-related factors on implant failure up to the abutment stage. Clin Oral Implants Res. 2002;13(6):617–22.

    PubMed  Google Scholar 

  96. Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 2009;20 Suppl 4:172–84.

    PubMed  Google Scholar 

  97. Kasemo B. Biocompatibility of titanium implants: surface science aspects. J Prosthet Dent. 1983;49(6):832–7.

    PubMed  Google Scholar 

  98. Kasemo B, Lausmaa J. Biomaterial and implant surfaces: a surface science approach. Int J Oral Maxillofac Implants. 1988;3(4):247–59.

    PubMed  Google Scholar 

  99. Kilpadi DV, Lemons JE. Surface energy characterization of unalloyed titanium implants. J Biomed Mater Res. 1994;28(12):1419–25.

    PubMed  Google Scholar 

  100. Baier RE, Meyer AE, Natiella JR, Natiella RR, Carter JM. Surface properties determine bioadhesive outcomes: methods and results. J Biomed Mater Res. 1984;18(4):337–55.

    PubMed  Google Scholar 

  101. Schrader ME. On adhesion of biological substances to low energy solid surfaces. J Colloid Interface Sci. 1982;88(1):296–7.

    Google Scholar 

  102. Boehm HP. Acidic and basic properties of hydroxylated metal oxide surfaces. Discuss Faraday Soc. 1971;52:264–75.

    Google Scholar 

  103. Wennerberg A, Jimbo R, Stubinger S, Obrecht M, Dard M, Berner S. Nanostructures and hydrophilicity influence osseointegration: a biomechanical study in the rabbit tibia. Clin Oral Implants Res. 2014;25(9):1041–50.

    PubMed  Google Scholar 

  104. Dohan Ehrenfest DM, Vazquez L, Park YJ, Sammartino G, Bernard JP. Identification card and codification of the chemical and morphological characteristics of 14 dental implant surfaces. J Oral Implantol. 2011;37(5):525–42.

    PubMed  Google Scholar 

  105. Sittig C, Textor M, Spencer ND, Wieland M, Vallotton PH. Surface characterization of implant materials c.p. Ti, Ti-6Al-7Nb and Ti-6Al-4V with different pretreatments. J Mater Sci Mater Med. 1999;10(1):35–46.

    PubMed  Google Scholar 

  106. Jamieson JC. Crystal structures of titanium, zirconium, and hafnium at high pressures. Science. 1963;140(3562):72–3.

    PubMed  Google Scholar 

  107. Frank MJ, Walter MS, Lyngstadaas SP, Wintermantel E, Haugen HJ. Hydrogen content in titanium and a titanium-zirconium alloy after acid etching. Mater Sci Eng C Mater Biol Appl. 2013;33(3):1282–8.

    PubMed  Google Scholar 

  108. Kobayashi E, Matsumoto S, Doi H, Yoneyama T, Hamanaka H. Mechanical properties of the binary titanium-zirconium alloys and their potential for biomedical materials. J Biomed Mater Res. 1995;29(8):943–50.

    PubMed  Google Scholar 

  109. Saulacic N, Bosshardt DD, Bornstein MM, Berner S, Buser D. Bone apposition to a titanium-zirconium alloy implant, as compared to two other titanium-containing implants. Eur Cell Mater. 2012;23:273–86; discussion 286–8.

    PubMed  Google Scholar 

  110. Davies JE. In vitro modeling of the bone/implant interface. Anat Rec. 1996;245(2):426–45.

    PubMed  Google Scholar 

  111. Hong J, Kurt S, Thor A. A hydrophilic dental implant surface exhibit thrombogenic properties in vitro. Clin Implant Dent Relat Res. 2013;15(1):105–12.

    PubMed  Google Scholar 

  112. Hamlet S, Alfarsi M, George R, Ivanovski S. The effect of hydrophilic titanium surface modification on macrophage inflammatory cytokine gene expression. Clin Oral Implants Res. 2012;23(5):584–90.

    PubMed  Google Scholar 

  113. Alfarsi MA, Hamlet SM, Ivanovski S. Titanium surface hydrophilicity modulates the human macrophage inflammatory cytokine response. J Biomed Mater Res A. 2014;102A:60–7.

    Google Scholar 

  114. Qu Z, Rausch-Fan X, Wieland M, Matejka M, Schedle A. The initial attachment and subsequent behavior regulation of osteoblasts by dental implant surface modification. J Biomed Mater Res A. 2007;82(3):658–68.

    PubMed  Google Scholar 

  115. Mamalis AA, Silvestros SS. Analysis of osteoblastic gene expression in the early human mesenchymal cell response to a chemically modified implant surface: an in vitro study. Clin Oral Implants Res. 2011;22(5):530–7.

    PubMed  Google Scholar 

  116. Wall I, Donos N, Carlqvist K, Jones F, Brett P. Modified titanium surfaces promote accelerated osteogenic differentiation of mesenchymal stromal cells in vitro. Bone. 2009;45(1):17–26.

    PubMed  Google Scholar 

  117. Mamalis AA, Markopoulou C, Vrotsos I, Koutsilirieris M. Chemical modification of an implant surface increases osteogenesis and simultaneously reduces osteoclastogenesis: an in vitro study. Clin Oral Implants Res. 2011;22(6):619–26.

    PubMed  Google Scholar 

  118. Lai HC, Zhuang LF, Liu X, Wieland M, Zhang ZY. The influence of surface energy on early adherent events of osteoblast on titanium substrates. J Biomed Mater Res A. 2010;93(1):289–96.

    PubMed  Google Scholar 

  119. Klein MO, Bijelic A, Ziebart T, Koch F, Kammerer PW, Wieland M, et al. Submicron scale-structured hydrophilic titanium surfaces promote early osteogenic gene response for cell adhesion and cell differentiation. Clin Implant Dent Relat Res. 2013;15(2):166–75.

    PubMed  Google Scholar 

  120. Zhao G, Raines AL, Wieland M, Schwartz Z, Boyan BD. Requirement for both micron- and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography. Biomaterials. 2007;28(18):2821–9.

    PubMed Central  PubMed  Google Scholar 

  121. Fang M, Olivares-Navarrete R, Wieland M, Cochran DL, Boyan BD, Schwartz Z. The role of phospholipase D in osteoblast response to titanium surface microstructure. J Biomed Mater Res A. 2010;93(3):897–909.

    PubMed  Google Scholar 

  122. Zhang Y, Andrukhov O, Berner S, Matejka M, Wieland M, Rausch-Fan X, et al. Osteogenic properties of hydrophilic and hydrophobic titanium surfaces evaluated with osteoblast-like cells (MG63) in coculture with human umbilical vein endothelial cells (HUVEC). Dent Mater: Off Publ Acad Dent Mater. 2010;26(11):1043–51.

    Google Scholar 

  123. Rausch-fan X, Qu Z, Wieland M, Matejka M, Schedle A. Differentiation and cytokine synthesis of human alveolar osteoblasts compared to osteoblast-like cells (MG63) in response to titanium surfaces. Dent Mater: Off Publ Acad Dent Mater. 2008;24(1):102–10.

    Google Scholar 

  124. Raines AL, Olivares-Navarrete R, Wieland M, Cochran DL, Schwartz Z, Boyan BD. Regulation of angiogenesis during osseointegration by titanium surface microstructure and energy. Biomaterials. 2010;31(18):4909–17.

    PubMed Central  PubMed  Google Scholar 

  125. Olivares-Navarrete R, Hyzy SL, Hutton DL, Erdman CP, Wieland M, Boyan BD, et al. Direct and indirect effects of microstructured titanium substrates on the induction of mesenchymal stem cell differentiation towards the osteoblast lineage. Biomaterials. 2010;31(10):2728–35.

    PubMed Central  PubMed  Google Scholar 

  126. Stein GS, Lian JB, Owen TA. Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation. FASEB J: Off Publ Fed Am Soc Exp Biol. 1990;4(13):3111–23.

    Google Scholar 

  127. Bang SM, Moon HJ, Kwon YD, Yoo JY, Pae A, Kwon IK. Osteoblastic and osteoclastic differentiation on SLA and hydrophilic modified SLA titanium surfaces. Clin Oral Implants Res. 2014;25(7):831–7.

    PubMed  Google Scholar 

  128. Masaki C, Schneider GB, Zaharias R, Seabold D, Stanford C. Effects of implant surface microtopography on osteoblast gene expression. Clin Oral Implants Res. 2005;16(6):650–6.

    PubMed  Google Scholar 

  129. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937): 337–42.

    PubMed  Google Scholar 

  130. Cochran DL. Inflammation and bone loss in periodontal disease. J Periodontol. 2008;79(8 Suppl): 1569–76.

    PubMed  Google Scholar 

  131. Kou PM, Schwartz Z, Boyan BD, Babensee JE. Dendritic cell responses to surface properties of clinical titanium surfaces. Acta Biomater. 2011;7(3):1354–63.

    PubMed Central  PubMed  Google Scholar 

  132. Schwarz F, Herten M, Sager M, Wieland M, Dard M, Becker J. Histological and immunohistochemical analysis of initial and early osseous integration at chemically modified and conventional SLA titanium implants: preliminary results of a pilot study in dogs. Clin Oral Implants Res. 2007;18(4):481–8.

    PubMed  Google Scholar 

  133. Ziebart T, Schnell A, Walter C, Kammerer PW, Pabst A, Lehmann KM, et al. Interactions between endothelial progenitor cells (EPC) and titanium implant surfaces. Clin Oral Investig. 2013;17(1):301–9.

    PubMed  Google Scholar 

  134. An N, Schedle A, Wieland M, Andrukhov O, Matejka M, Rausch-Fan X. Proliferation, behavior, and cytokine gene expression of human umbilical vascular endothelial cells in response to different titanium surfaces. J Biomed Mater Res A. 2010;93(1):364–72.

    PubMed  Google Scholar 

  135. Cochran DL, Hermann JS, Schenk RK, Higginbottom FL, Buser D. Biologic width around titanium implants. A histometric analysis of the implanto-gingival junction around unloaded and loaded nonsubmerged implants in the canine mandible. J Periodontol. 1997;68(2):186–98.

    PubMed  Google Scholar 

  136. An N, Rausch-fan X, Wieland M, Matejka M, Andrukhov O, Schedle A. Initial attachment, subsequent cell proliferation/viability and gene expression of epithelial cells related to attachment and wound healing in response to different titanium surfaces. Dent Mater: Off Publ Acad Dent Mater. 2012;28(12):1207–14.

    Google Scholar 

  137. Schroeder A, van der Zypen E, Stich H, Sutter F. The reactions of bone, connective tissue, and epithelium to endosteal implants with titanium-sprayed surfaces. J Maxillofac Surg. 1981;9(1):15–25.

    PubMed  Google Scholar 

  138. Schwarz F, Ferrari D, Herten M, Mihatovic I, Wieland M, Sager M, et al. Effects of surface hydrophilicity and microtopography on early stages of soft and hard tissue integration at non-submerged titanium implants: an immunohistochemical study in dogs. J Periodontol. 2007;78(11):2171–84.

    PubMed  Google Scholar 

  139. Bosshardt DD, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Lang NP. The role of bone debris in early healing adjacent to hydrophilic and hydrophobic implant surfaces in man. Clin Oral Implants Res. 2011;22(4):357–64.

    PubMed  Google Scholar 

  140. Abdel-Haq J, Karabuda CZ, Arisan V, Mutlu Z, Kurkcu M. Osseointegration and stability of a modified sand-blasted acid-etched implant: an experimental pilot study in sheep. Clin Oral Implants Res. 2011;22(3):265–74.

    PubMed  Google Scholar 

  141. Schwarz F, Herten M, Sager M, Wieland M, Dard M, Becker J. Bone regeneration in dehiscence-type defects at chemically modified (SLActive) and conventional SLA titanium implants: a pilot study in dogs. J Clin Periodontol. 2007;34(1):78–86.

    PubMed  Google Scholar 

  142. Schlegel KA, Prechtl C, Most T, Seidl C, Lutz R, von Wilmowsky C. Osseointegration of SLActive implants in diabetic pigs. Clin Oral Implants Res. 2013;24(2):128–34.

    PubMed  Google Scholar 

  143. Ferguson SJ, Broggini N, Wieland M, de Wild M, Rupp F, Geis-Gerstorfer J, et al. Biomechanical evaluation of the interfacial strength of a chemically modified sandblasted and acid-etched titanium surface. J Biomed Mater Res A. 2006;78(2):291–7.

    PubMed  Google Scholar 

  144. Donos N, Hamlet S, Lang NP, Salvi GE, Huynh-Ba G, Bosshardt DD, et al. Gene expression profile of osseointegration of a hydrophilic compared with a hydrophobic microrough implant surface. Clin Oral Implants Res. 2011;22(4):365–72.

    PubMed  Google Scholar 

  145. Schwarz F, Sager M, Ferrari D, Herten M, Wieland M, Becker J. Bone regeneration in dehiscence-type defects at non-submerged and submerged chemically modified (SLActive) and conventional SLA titanium implants: an immunohistochemical study in dogs. J Clin Periodontol. 2008;35(1):64–75.

    PubMed  Google Scholar 

  146. Schwarz F, Rothamel D, Herten M, Wustefeld M, Sager M, Ferrari D, et al. Immunohistochemical characterization of guided bone regeneration at a dehiscence-type defect using different barrier membranes: an experimental study in dogs. Clin Oral Implants Res. 2008;19(4):402–15.

    PubMed  Google Scholar 

  147. Schwarz F, Jung RE, Fienitz T, Wieland M, Becker J, Sager M. Impact of guided bone regeneration and defect dimension on wound healing at chemically modified hydrophilic titanium implant surfaces: an experimental study in dogs. J Clin Periodontol. 2010;37(5):474–85.

    PubMed  Google Scholar 

  148. Lai HC, Zhuang LF, Zhang ZY, Wieland M, Liu X. Bone apposition around two different sandblasted, large-grit and acid-etched implant surfaces at sites with coronal circumferential defects: an experimental study in dogs. Clin Oral Implants Res. 2009;20(3):247–53.

    PubMed  Google Scholar 

  149. Linares A, Mardas N, Dard M, Donos N. Effect of immediate or delayed loading following immediate placement of implants with a modified surface. Clin Oral Implants Res. 2011;22(1):38–46.

    PubMed  Google Scholar 

  150. Mardas N, Schwarz F, Petrie A, Hakimi AR, Donos N. The effect of SLActive surface in guided bone formation in osteoporotic-like conditions. Clin Oral Implants Res. 2011;22(4):406–15.

    PubMed  Google Scholar 

  151. Valderrama P, Jones AA, Wilson Jr TG, Higginbottom F, Schoolfield JD, Jung RE, et al. Bone changes around early loaded chemically modified sandblasted and acid-etched surfaced implants with and without a machined collar: a radiographic and resonance frequency analysis in the canine mandible. Int J Oral Maxillofac Implants. 2010;25(3):548–57.

    PubMed  Google Scholar 

  152. Valderrama P, Bornstein MM, Jones AA, Wilson TG, Higginbottom FL, Cochran DL. Effects of implant design on marginal bone changes around early loaded, chemically modified, sandblasted acid-etched-surfaced implants: a histologic analysis in dogs. J Periodontol. 2011;82(7):1025–34.

    PubMed  Google Scholar 

  153. Hermann JS, Buser D, Schenk RK, Schoolfield JD, Cochran DL. Biologic width around one- and two-piece titanium implants. Clin Oral Implants Res. 2001;12(6):559–71.

    PubMed  Google Scholar 

  154. Hermann JS, Buser D, Schenk RK, Higginbottom FL, Cochran DL. Biologic width around titanium implants. A physiologically formed and stable dimension over time. Clin Oral Implants Res. 2000;11(1):1–11.

    PubMed  Google Scholar 

  155. Schwarz F, Herten M, Sager M, Wieland M, Dard M, Becker J. Histological and immunohistochemical analysis of initial and early subepithelial connective tissue attachment at chemically modified and conventional SLA titanium implants. A pilot study in dogs. Clin Oral Inv. 2007;11(3):245–55.

    Google Scholar 

  156. Schwarz F, Mihatovic I, Ferrari D, Wieland M, Becker J. Influence of frequent clinical probing during the healing phase on healthy peri-implant soft tissue formed at different titanium implant surfaces: a histomorphometrical study in dogs. J Clin Periodontol. 2010;37(6):551–62.

    PubMed  Google Scholar 

  157. Al-Hamdan K, Al-Moaber SH, Junker R, Jansen JA. Effect of implant surface properties on peri-implant bone healing: a histological and histomorphometric study in dogs. Clin Oral Implants Res. 2011;22(4):399–405.

    PubMed  Google Scholar 

  158. Schwarz F, Sager M, Kadelka I, Ferrari D, Becker J. Influence of titanium implant surface characteristics on bone regeneration in dehiscence-type defects: an experimental study in dogs. J Clin Periodontol. 2010;37(5):466–73.

    PubMed  Google Scholar 

  159. Gottlow J, Barkarmo S, Sennerby L. An experimental comparison of two different clinically used implant designs and surfaces. Clin Implant Dent Relat Res. 2012;14 Suppl 1:e204–12.

    PubMed  Google Scholar 

  160. Thoma DS, Jones AA, Dard M, Grize L, Obrecht M, Cochran DL. Tissue integration of a new titanium-zirconium dental implant: a comparative histologic and radiographic study in the canine. J Periodontol. 2011;82(10):1453–61.

    PubMed  Google Scholar 

  161. Kammerer PW, Palarie V, Schiegnitz E, Hagmann S, Alshihri A, Al-Nawas B. Vertical osteoconductivity and early bone formation of titanium-zirconium and titanium implants in a subperiosteal rabbit animal model. Clin Oral Implants Res. 2014;25(7):774–80.

    PubMed  Google Scholar 

  162. Wen B, Zhu F, Li Z, Zhang P, Lin X, Dard M. The osseointegration behavior of titanium-zirconium implants in ovariectomized rabbits. Clin Oral Implants Res. 2014;25(7):819–25.

    PubMed  Google Scholar 

  163. Gottlow J, Dard M, Kjellson F, Obrecht M, Sennerby L. Evaluation of a new titanium-zirconium dental implant: a biomechanical and histological comparative study in the mini pig. Clin Implant Dent Relat Res. 2012;14(4):538–45.

    PubMed  Google Scholar 

  164. Freilich M, Wen B, Shafer D, Schleier P, Dard M, Pendrys D, et al. Implant-guided vertical bone growth in the mini-pig. Clin Oral Implants Res. 2012;23(6):751–7.

    PubMed  Google Scholar 

  165. Anchieta RB, Baldassarri M, Guastaldi F, Tovar N, Janal MN, Gottlow J, et al. Mechanical property assessment of bone healing around a titanium-zirconium alloy dental implant. Clin Implant Dent Relat Res. 2013;volume*(number*):1–7. Epub.

    Google Scholar 

  166. Morton D, Bornstein MM, Wittneben JG, Martin WC, Ruskin JD, Hart CN, et al. Early loading after 21 days of healing of nonsubmerged titanium implants with a chemically modified sandblasted and acid-etched surface: two-year results of a prospective two-center study. Clin Implant Dent Relat Res. 2010;12(1):9–17.

    PubMed  Google Scholar 

  167. Schwarz F, Sculean A, Wieland M, Horn N, Nuesry E, Bube C, et al. Effects of hydrophilicity and microtopography of titanium implant surfaces on initial supragingival plaque biofilm formation. A pilot study. Mund-, Kiefer- und Gesichtschirurgie MKG. 2007;11(6):333–8.

    PubMed  Google Scholar 

  168. Oates TW, Valderrama P, Bischof M, Nedir R, Jones A, Simpson J, et al. Enhanced implant stability with a chemically modified SLA surface: a randomized pilot study. Int J Oral Maxillofac Implants. 2007;22(5):755–60.

    PubMed  Google Scholar 

  169. Valderrama P, Oates TW, Jones AA, Simpson J, Schoolfield JD, Cochran DL. Evaluation of two different resonance frequency devices to detect implant stability: a clinical trial. J Periodontol. 2007;78(2):262–72.

    PubMed  Google Scholar 

  170. Han J, Lulic M, Lang NP. Factors influencing resonance frequency analysis assessed by Osstell mentor during implant tissue integration: II. Implant surface modifications and implant diameter. Clin Oral Implants Res. 2010;21(6):605–11.

    PubMed  Google Scholar 

  171. Khandelwal N, Oates TW, Vargas A, Alexander PP, Schoolfield JD, Alex McMahan C. Conventional SLA and chemically modified SLA implants in patients with poorly controlled type 2 diabetes mellitus–a randomized controlled trial. Clin Oral Implants Res. 2013;24(1):13–9.

    PubMed  Google Scholar 

  172. Schatzle M, Mannchen R, Balbach U, Hammerle CH, Toutenburg H, Jung RE. Stability change of chemically modified sandblasted/acid-etched titanium palatal implants. A randomized-controlled clinical trial. Clin Oral Implants Res. 2009;20(5):489–95.

    PubMed  Google Scholar 

  173. Bornstein MM, Wittneben JG, Bragger U, Buser D. Early loading at 21 days of non-submerged titanium implants with a chemically modified sandblasted and acid-etched surface: 3-year results of a prospective study in the posterior mandible. J Periodontol. 2010;81(6):809–18.

    PubMed  Google Scholar 

  174. Bornstein MM, Hart CN, Halbritter SA, Morton D, Buser D. Early loading of nonsubmerged titanium implants with a chemically modified sand-blasted and acid-etched surface: 6-month results of a prospective case series study in the posterior mandible focusing on peri-implant crestal bone changes and implant stability quotient (ISQ) values. Clin Implant Dent Relat Res. 2009;11(4):338–47.

    PubMed  Google Scholar 

  175. Roccuzzo M, Wilson Jr TG. A prospective study of 3 weeks’ loading of chemically modified titanium implants in the maxillary molar region: 1-year results. Int J Oral Maxillofac Implants. 2009;24(1):65–72.

    PubMed  Google Scholar 

  176. Karabuda ZC, Abdel-Haq J, Arisan V. Stability, marginal bone loss and survival of standard and modified sand-blasted, acid-etched implants in bilateral edentulous spaces: a prospective 15-month evaluation. Clin Oral Implants Res. 2011;22(8):840–9.

    PubMed  Google Scholar 

  177. Zollner A, Ganeles J, Korostoff J, Guerra F, Krafft T, Bragger U. Immediate and early non-occlusal loading of Straumann implants with a chemically modified surface (SLActive) in the posterior mandible and maxilla: interim results from a prospective multicenter randomized-controlled study. Clin Oral Implants Res. 2008;19(5):442–50.

    PubMed  Google Scholar 

  178. Ganeles J, Zollner A, Jackowski J, ten Bruggenkate C, Beagle J, Guerra F. Immediate and early loading of Straumann implants with a chemically modified surface (SLActive) in the posterior mandible and maxilla: 1-year results from a prospective multicenter study. Clin Oral Implants Res. 2008;19(11):1119–28.

    PubMed  Google Scholar 

  179. Nicolau P, Korostoff J, Ganeles J, Jackowski J, Krafft T, Neves M, et al. Immediate and early loading of chemically modified implants in posterior jaws: 3-year results from a prospective randomized multicenter study. Clin Implant Dent Relat Res. 2013;15(4):600–12.

    PubMed  Google Scholar 

  180. Stoker GT, Wismeijer D. Immediate loading of two implants with a mandibular implant-retained overdenture: a new treatment protocol. Clin Implant Dent Relat Res. 2011;13(4):255–61.

    PubMed  Google Scholar 

  181. Bergkvist G, Koh KJ, Sahlholm S, Klintstrom E, Lindh C. Bone density at implant sites and its relationship to assessment of bone quality and treatment outcome. Int J Oral Maxillofac Implants. 2010;25(2):321–8.

    PubMed  Google Scholar 

  182. Luongo G, Oteri G. A noninterventional study documenting use and success of implants with a new chemically modified titanium surface in daily dental practice. J Oral Implantol. 2010;36(4):305–14.

    PubMed  Google Scholar 

  183. Lindgren C, Mordenfeld A, Hallman M. A prospective 1-year clinical and radiographic study of implants placed after maxillary sinus floor augmentation with synthetic biphasic calcium phosphate or deproteinized bovine bone. Clin Implant Dent Relat Res. 2012;14(1):41–50.

    PubMed  Google Scholar 

  184. Markovic A, Colic S, Drazic R, Gacic B, Todorovic A, Stajcic Z. Resonance frequency analysis as a reliable criterion for early loading of sandblasted/acid-etched active surface implants placed by the osteotome sinus floor elevation technique. Int J Oral Maxillofac Implants. 2011;26(4):718–24.

    PubMed  Google Scholar 

  185. Rossi F, Ricci E, Marchetti C, Lang NP, Botticelli D. Early loading of single crowns supported by 6-mm-long implants with a moderately rough surface: a prospective 2-year follow-up cohort study. Clin Oral Implants Res. 2010;21(9):937–43.

    PubMed  Google Scholar 

  186. Heberer S, Kilic S, Hossamo J, Raguse JD, Nelson K. Rehabilitation of irradiated patients with modified and conventional sandblasted acid-etched implants: preliminary results of a split-mouth study. Clin Oral Implants Res. 2011;22(5):546–51.

    PubMed  Google Scholar 

  187. Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants. 1986;1(1):11–25.

    PubMed  Google Scholar 

  188. Lazzara RJ, Porter SS. Platform switching: a new concept in implant dentistry for controlling postrestorative crestal bone levels. Int J Periodontics Restorative Dent. 2006;26(1):9–17.

    PubMed  Google Scholar 

  189. Hammerle CH, Jung RE, Sanz M, Chen S, Martin WC, Jackowski J, et al. Submerged and transmucosal healing yield the same clinical outcomes with two-piece implants in the anterior maxilla and mandible: interim 1-year results of a randomized, controlled clinical trial. Clin Oral Implants Res. 2012;23(2):211–9.

    PubMed  Google Scholar 

  190. Sanz M, Ivanoff CJ, Weingart D, Wiltfang J, Gahlert M, Cordaro L, et al. Clinical and radiologic outcomes after submerged and transmucosal implant placement with two-piece implants in the anterior maxilla and mandible: 3-year results of a randomized controlled clinical trial. Clin Implant Dent Relat Res. 2013;volume*(number*):1–13. Epub.

    Google Scholar 

  191. Buser D, Halbritter S, Hart C, Bornstein MM, Grutter L, Chappuis V, et al. Early implant placement with simultaneous guided bone regeneration following single-tooth extraction in the esthetic zone: 12-month results of a prospective study with 20 consecutive patients. J Periodontol. 2009;80(1):152–62.

    PubMed  Google Scholar 

  192. Buser D, Wittneben J, Bornstein MM, Grutter L, Chappuis V, Belser UC. Stability of contour augmentation and esthetic outcomes of implant-supported single crowns in the esthetic zone: 3-year results of a prospective study with early implant placement postextraction. J Periodontol. 2011;82(3):342–9.

    PubMed  Google Scholar 

  193. Buser D, Chappuis V, Kuchler U, Bornstein MM, Wittneben JG, Buser R, et al. Long-term stability of early implant placement with contour augmentation. J Dent Res. 2013;92(12 Suppl):176S–82.

    PubMed Central  PubMed  Google Scholar 

  194. Chiapasco M, Casentini P, Zaniboni M, Corsi E, Anello T. Titanium-zirconium alloy narrow-diameter implants (Straumann Roxolid((R))) for the rehabilitation of horizontally deficient edentulous ridges: prospective study on 18 consecutive patients. Clin Oral Implants Res. 2012;23(10):1136–41.

    PubMed  Google Scholar 

  195. Barter S, Stone P, Bragger U. A pilot study to evaluate the success and survival rate of titanium-zirconium implants in partially edentulous patients: results after 24 months of follow-up. Clin Oral Implants Res. 2012;23(7):873–81.

    PubMed  Google Scholar 

  196. Benic GI, Gallucci GO, Mokti M, Hammerle CH, Weber HP, Jung RE. Titanium-zirconium narrow-diameter versus titanium regular-diameter implants for anterior and premolar single crowns: 1-year results of a randomized controlled clinical study. J Clin Periodontol. 2013;40(11):1052–61.

    PubMed  Google Scholar 

  197. Al-Nawas B, Bragger U, Meijer HJ, Naert I, Persson R, Perucchi A, et al. A double-blind randomized controlled trial (RCT) of Titanium-13Zirconium versus Titanium Grade IV small-diameter bone level implants in edentulous mandibles–results from a 1-year observation period. Clin Implant Dent Relat Res. 2012;14(6):896–904.

    PubMed  Google Scholar 

  198. Tolentino L, Sukekava F, Seabra M, Lima LA, Garcez-Filho J, Araujo MG. Success and survival rates of narrow diameter implants made of titanium-zirconium alloy in the posterior region of the jaws – results from a 1-year follow-up. Clin Oral Implants Res. 2014;25(2):137–41.

    PubMed  Google Scholar 

  199. Schwarz F, Wieland M, Schwartz Z, Zhao G, Rupp F, Geis-Gerstorfer J, et al. Potential of chemically modified hydrophilic surface characteristics to support tissue integration of titanium dental implants. J Biomed Mater Res B Appl Biomater. 2009;88(2):544–57.

    PubMed  Google Scholar 

  200. Li P, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, de Groot K. The role of hydrated silica, titania, and alumina in inducing apatite on implants. J Biomed Mater Res. 1994;28(1):7–15.

    PubMed  Google Scholar 

  201. Berglundh T, Abrahamsson I, Lang NP, Lindhe J. De novo alveolar bone formation adjacent to endosseous implants. Clin Oral Implants Res. 2003;14(3):251–62.

    PubMed  Google Scholar 

  202. Raghavendra S, Wood MC, Taylor TD. Early wound healing around endosseous implants: a review of the literature. Int J Oral Maxillofac Implants. 2005;20(3):425–31.

    PubMed  Google Scholar 

  203. Bornstein MM, Harnisch H, Lussi A, Buser D. Clinical performance of wide-body implants with a sandblasted and acid-etched (SLA) surface: results of a 3-year follow-up study in a referral clinic. Int J Oral Maxillofac Implants. 2007;22(4):631–8.

    PubMed  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge Dr. Michael Hotze and Dr. Simon Berner (Institut Straumann AG, Basel, Switzerland) for support and proofreading the text, for providing images, and for their valuable comments with regard to the content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Cochran DDS, MS, PhD, MMSci, Drhc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roehling, S.K., Meng, B., Cochran, D.L. (2015). Sandblasted and Acid-Etched Implant Surfaces With or Without High Surface Free Energy: Experimental and Clinical Background. In: Wennerberg, A., Albrektsson, T., Jimbo, R. (eds) Implant Surfaces and their Biological and Clinical Impact. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45379-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45379-7_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45378-0

  • Online ISBN: 978-3-662-45379-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics