Skip to main content

Arbuscular Mycorrhizal Diversity and Function in Grassland Ecosystems

  • Chapter
  • First Online:
Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration

Part of the book series: Soil Biology ((SOILBIOL,volume 41))

  • 2536 Accesses

Abstract

Grasslands are widely distributed throughout the world, maintained with no or low input of fertiliser without tillage, and are used for grazing and fodder harvesting. Arbuscular mycorrhizal (AM) fungi colonise the majority of grassland plant species with little evidence of host specificity. AM fungi play significant roles in nutrient cycling in grasslands. However, grasslands are diverse ecosystems so it is difficult to generalise the contribution of mycorrhizas to these plant communities. Nevertheless, plant diversity has been shown to have a positive relationship with AM fungal diversity and community structure. AM fungi have potential to contribute in a significant way to the maintenance and restoration of grasslands through their roles in influencing the plant community structure, nutrient cycling and soil structure. The structure and function of AM fungal communities in grasslands can be altered by management practices, such as grazing pressure, and this will influence their contribution to soil processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Karaki G, Clark R (1998) Growth, mineral acquisition, and water use by mycorrhizal wheat grown under water stress. J Plant Nutr 21:263–276

    CAS  Google Scholar 

  • Allen MF (1996) The ecology of arbuscular mycorrhizas: a look back into the 20th century and a peek into the 21st century. Mycol Res 100:769–782

    Google Scholar 

  • Allen EB, Allen MF (1980) Natural re-establishment of vesicular-arbuscular mycorrhizae following stripmine reclamation in Wyoming. J Appl Ecol 17:139–147

    Google Scholar 

  • Allison VJ, Miller RM, Jastrow JD, Matamala R, Zak DR (2005) Changes in soil microbial community structure in a tallgrass prairie chronosequence. Soil Sci Soc Am J 69:1412–1421

    CAS  Google Scholar 

  • Allsopp N (1998) Effect of defoliation on the arbuscular mycorrhizas of three perennial pasture and rangeland grasses. Plant and Soil 202:117–124

    CAS  Google Scholar 

  • An G-H, Miyakawa S, Kawahara A, Osaki M, Ezawa T (2008) Community structure of arbuscular mycorrhizal fungi associated with pioneer grass species Miscanthus sinensis in acid sulfate soils: habitat segregation along pH gradients. Soil Sci Plant Nutr 54:517–528

    Google Scholar 

  • Andrade G, Mihara K, Linderman R, Bethlenfalvay G (1998) Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant and Soil 202:89–96

    CAS  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Google Scholar 

  • Augé RM, Stodola AJ, Tims JE, Saxton AM (2001) Moisture retention properties of a mycorrhizal soil. Plant and Soil 230:87–97

    Google Scholar 

  • Ba L, Ning JX, Wang DL, Facelli E, Facelli JM, Yang YN, Zhang LC (2012) The relationship between the diversity of arbuscular mycorrhizal fungi and grazing in a meadow steppe. Plant and Soil 352:143–156

    CAS  Google Scholar 

  • Bai G, Bao Y, Du G, Qi Y (2013) Arbuscular mycorrhizal fungi associated with vegetation and soil parameters under rest grazing management in a desert steppe ecosystem. Mycorrhiza 23:289–301

    PubMed  Google Scholar 

  • Barni E, Siniscalco C (2000) Vegetation dynamics and arbuscular mycorrhiza in old-field successions of the western Italian Alps. Mycorrhiza 10:63–72

    Google Scholar 

  • Barto EK, Rillig MC (2010) Does herbivory really suppress mycorrhiza? A meta-analysis. J Ecol 98:745–753

    Google Scholar 

  • Barto EK, Alt F, Oelmann Y, Wilcke W, Rillig MC (2010) Contributions of biotic and abiotic factors to soil aggregation across a land use gradient. Soil Biol Biochem 42:2316–2324

    CAS  Google Scholar 

  • Bender SF, Plantenga F, Neftel A, Jocher M, Oberholzer HR, Köhl L, Giles M, Daniell TJ, van der Heijden MG (2014) Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil. ISME J 8(6):1336–1345

    CAS  PubMed  Google Scholar 

  • Bentivenga S, Hetrick B (1992) Seasonal and temperature effects on mycorrhizal activity and dependence of cool-and warm-season tallgrass prairie grasses. Can J Bot 70:1596–1602

    Google Scholar 

  • Bethlenfalvay GJ, Dakessian S (1984) Grazing effects on mycorrhizal colonization and floristic composition of the vegetation on a semiarid range in northern Nevada. J Range Manage 37:312–316

    Google Scholar 

  • Binet M et al (2013) Effects of mowing on fungal endophytes and arbuscular mycorrhizal fungi in subalpine grasslands. Fungal Ecol 6:248–255

    Google Scholar 

  • Birgander J, Rousk J, Olsson PA (2014) Comparison of fertility and seasonal effects on grassland microbial communities. Soil Biol Biochem 76:80–89

    CAS  Google Scholar 

  • Bittman S, Forge TA, Kowalenko CG (2005) Responses of the bacterial and fungal biomass in a grassland soil to multi-year applications of dairy manure slurry and fertilizer. Soil Biol Biochem 37:613–623

    CAS  Google Scholar 

  • Borowicz VA (2001) Do arbuscular mycorrhizal fungi alter plant-pathogen relations? Ecology 82:3057–3068

    Google Scholar 

  • Brundrett M, Abbott L, Jasper D (1999) Glomalean mycorrhizal fungi from tropical Australia. Mycorrhiza 8:305–314

    Google Scholar 

  • Chagnon P-L, Bradley RL, Maherali H, Klironomos JN (2013) A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 18:484–491

    CAS  PubMed  Google Scholar 

  • Chen YL, Zhang X, Ye JS, Han HY, Wan SQ, Chen BD (2014) Six-year fertilization modifies the biodiversity of arbuscular mycorrhizal fungi in a temperate steppe in inner Mongolia. Soil Biol Biochem 69:371–381

    CAS  Google Scholar 

  • Christie P, Kilpatric D (1992) Vesicular-arbuscular mycorrhiza infection in cut grassland following long-term slurry application. Soil Biol Biochem 24:325–330

    Google Scholar 

  • Clapp JP, Helgason T, Daniell TJ, Peter J, Young W (2003) Genetic studies of the structure and diversity of arbuscular mycorrhizal fungal communities. In: Sanders IR, Marcel GA, van der Heijden MGA (eds) Mycorrhizal ecology. Springer, Heidelberg, pp 201–224

    Google Scholar 

  • Collins CD, Foster BL (2009) Community-level consequences of mycorrhizae depend on phosphorus availability. Ecology 90:2567–2576

    PubMed  Google Scholar 

  • De La Peña E, Echeverría SR, Van Der Putten WH, Freitas H, Moens M (2006) Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. New Phytol 169:829–840

    PubMed  Google Scholar 

  • del Mar Alguacil M, Lozano Z, Campoy MJ, Roldan A (2010) Phosphorus fertilisation management modifies the biodiversity of AM fungi in a tropical savanna forage system. Soil Biol Biochem 42:1114–1122

    CAS  Google Scholar 

  • Douds D Jr, Galvez L, Bécard G, Kapulnik Y (1998) Regulation of arbuscular mycorrhizal development by plant host and fungus species in alfalfa. New Phytol 138:27–35

    Google Scholar 

  • Dumbrell AJ, Ashton PD, Aziz N, Feng G, Nelson M, Dytham C, Fitter AH, Helgason T (2011) Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytol 190(3):794–804

    CAS  PubMed  Google Scholar 

  • Eason W, Scullion J, Scott E (1999) Soil parameters and plant responses associated with arbuscular mycorrhizas from contrasting grassland management regimes. Agr Ecosyst Environ 73:245–255

    Google Scholar 

  • Egerton-Warburton LM, Allen EB (2000) Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol Appl 10:484–496

    Google Scholar 

  • Eom A-H, Hartnett DC, Wilson GW (2000) Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia 122:435–444

    Google Scholar 

  • Eom A-H, Wilson GW, Hartnett DC (2001) Effects of ungulate grazers on arbuscular mycorrhizal symbiosis and fungal community structure in tallgrass prairie. Mycologia 93:233–242

    Google Scholar 

  • Eriksen M, Bjureke KE, Dhillion SS (2002) Mycorrhizal plants of traditionally managed boreal grasslands in Norway. Mycorrhiza 12:117–123

    PubMed  Google Scholar 

  • Escudero V, Mendoza R (2005) Seasonal variation of arbuscular mycorrhizal fungi in temperate grasslands along a wide hydrologic gradient. Mycorrhiza 15:291–299

    PubMed  Google Scholar 

  • Fellbaum CR, Mensah JA, Cloos AJ, Strahan GE, Pfeffer PE, Kiers ET, Bücking H (2014) Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytol 203:646–656

    CAS  PubMed  Google Scholar 

  • Firbank L (2005) Striking a new balance between agricultural production and biodiversity. Ann Appl Biol 146:163–175

    Google Scholar 

  • Forge T, Muehlchen A, Hackenberg C, Neilsen G, Vrain T (2001) Effects of preplant inoculation of apple (Malus domestica Borkh.) with arbuscular mycorrhizal fungi on population growth of the root-lesion nematode, Pratylenchus penetrans. Plant and Soil 236:185–196

    CAS  Google Scholar 

  • Frank DA, Gehring CA, Machut L, Phillips M (2003) Soil community composition and the regulation of grazed temperate grassland. Oecologia 137:603–609

    PubMed  Google Scholar 

  • Franz Lang B, Hijri M (2009) The complete Glomus intraradices mitochondrial genome sequence - a milestone in mycorrhizal research. New Phytol 183:3–6

    PubMed  Google Scholar 

  • Gange AC (1993) Translocation of mycorrhizal fungi by earthworms during early succession. Soil Biol Biochem 25:1021–1026

    Google Scholar 

  • Garg N, Chandel S (2010) Arbuscular mycorrhizal networks: process and functions. A review. Agron Sustain Dev 30:581–599

    CAS  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet M-N, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    PubMed  Google Scholar 

  • Göransson P, Olsson PA, Postma J, Falkengren-Grerup U (2008) Colonisation by arbuscular mycorrhizal and fine endophytic fungi in four woodland grasses - variation in relation to pH and aluminium. Soil Biol Biochem 40:2260–2265

    Google Scholar 

  • Grayston S, Griffith G, Mawdsley J, Campbell C, Bardgett RD (2001) Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol Biochem 33:533–551

    CAS  Google Scholar 

  • Grime J, Mackey J, Hillier S, Read D (1987) Floristic diversity in a model system using experimental microcosms. Nature 328:420–422

    Google Scholar 

  • Gworgwor NA, Weber HC (2003) Arbuscular mycorrhizal fungi-parasite-host interaction for the control of Striga hermonthica (Del.) Benth. in sorghum [Sorghum bicolor (L.) Moench]. Mycorrhiza 13:277–281

    PubMed  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hazard C, Boots B, Keith AM, Mitchell DT, Schmidt O, Doohan FM, Bending GD (2014) Temporal variation outweighs effects of biosolids applications in shaping arbuscular mycorrhizal fungi communities on plants grown in pasture and arable soils. Appl Soil Ecol 82:52–60

    Google Scholar 

  • Helgason BL, Walley FL, Germida JJ (2010) No-till soil management increases microbial biomass and alters community profiles in soil aggregates. Appl Soil Ecol 46:390–397

    Google Scholar 

  • Hetrick BAD, Bloom J (1986) The influence of host plant on production and colonization ability of vesicular-arbuscular mycorrhizal spores. Mycologia 78(1):32–36

    Google Scholar 

  • Hetrick B, Wilson G (1991) Effects of mycorrhizal fungus species and metalaxyl application on microbial suppression of mycorrhizal symbiosis. Mycologia 97–102

    Google Scholar 

  • Hetrick B, Wilson G, Todd T (1990) Differential responses of C3 and C4 grasses to mycorrhizal symbiosis, phosphorus fertilization, and soil microorganisms. Can J Bot 68:461–467

    Google Scholar 

  • Hiiesalu I, Pärtel M, Davison J, Gerhold P, Metsis M, Moora M, Öpik M, Vasar M, Martin Z, Wilson SD (2014) Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. New Phytol 203:233–244

    CAS  PubMed  Google Scholar 

  • Hildebrandt U, Janetta K, Ouziad F, Renne B, Nawrath K, Bothe H (2001) Arbuscular mycorrhizal colonization of halophytes in central European salt marshes. Mycorrhiza 10:175–183

    CAS  Google Scholar 

  • Jenkins SN, Waite IS, Blackburn A, Husband R, Rushton SP, Manning DC, O’Donnell AG (2009) Actinobacterial community dynamics in long term managed grasslands. Antonie Van Leeuwenhoek 95:319–334

    PubMed  Google Scholar 

  • Ji B, Gehring CA, Wilson GW, Miller R, Flores‐Rentería L, Johnson NC (2013) Patterns of diversity and adaptation in Glomeromycota from three prairie grasslands. Mol Ecol 22:2573–2587

    CAS  PubMed  Google Scholar 

  • Jin L, Zhang GQ, Wang XJ, Dou CY, Chen M, Lin SS, Li YY (2011) Arbuscular mycorrhiza regulate inter-specific competition between a poisonous plant, Ligularia virgaurea, and a co-existing grazing grass, Elymus nutans, in Tibetan Plateau Alpine meadow ecosystem. Symbiosis 55:29–38

    Google Scholar 

  • Johnson NC, Tilman D, Wedin D (1992) Plant and soil controls on mycorrhizal fungal communities. Ecology 73:2034–2042

    Google Scholar 

  • Johnson D, Vandenkoornhuyse PJ, Leake JR, Gilbert L, Booth RE, Grime JP, Peter J, Young W, Read DJ (2004) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503–515

    Google Scholar 

  • Jumpponen A, Trowbridge J, Mandyam K, Johnson L (2005) Nitrogen enrichment causes minimal changes in arbuscular mycorrhizal colonization but shifts community composition - evidence from rDNA data. Biol Fertil Soils 41:217–224

    CAS  Google Scholar 

  • Kabir Z (2005) Tillage or no-tillage: impact on mycorrhizae. Can J Plant Sci 85:23–29

    Google Scholar 

  • Kabir Z, O’halloran I, Fyles J, Hamel C (1997) Seasonal changes of arbuscular mycorrhizal fungi as affected by tillage practices and fertilization: hyphal density and mycorrhizal root colonization. Plant and Soil 192:285–293

    CAS  Google Scholar 

  • Kaeppler SM, Parke JL, Mueller SM, Senior L, Stuber C, Tracy WF (2000) Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to arbuscular mycorrhizal fungi. Crop Sci 40:358–364

    Google Scholar 

  • Kan A (2009) General characteristics of waste management: a review. Energy Educ Sci Technol Part A 23:55–69

    CAS  Google Scholar 

  • Kaya C, Higgs D, Kirnak H, Tas I (2003) Mycorrhizal colonisation improves fruit yield and water use efficiency in watermelon (Citrullus lanatus Thunb.) grown under well-watered and water-stressed conditions. Plant Soil 253:287–292

    CAS  Google Scholar 

  • Khaliq A, Sanders F (2000) Effects of vesicular–arbuscular mycorrhizal inoculation on the yield and phosphorus uptake of field-grown barley. Soil Biol Biochem 32:1691–1696

    CAS  Google Scholar 

  • Klabi R, Hamel C, Schellenberg MP, Iwaasa A, Raies A, St-Arnaud M (2014) Interaction between legume and arbuscular mycorrhizal fungi identity alters the competitive ability of warm-season grass species in a grassland community. Soil Biol Biochem 70:176–182

    CAS  Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Google Scholar 

  • Kojima T, Saito M, Shoji A, Ando S, Sugawara K (2009) The diversity of arbuscular mycorrhizal fungi in Japanese grasslands. Jap J Grassland Sci 55:148–155

    Google Scholar 

  • Kristensen H, McCarty G, Meisinger J (2000) Effects of soil structure disturbance on mineralization of organic soil nitrogen. Soil Sci Soc Am J 64:371–378

    CAS  Google Scholar 

  • Krüger M, Stockinger H, Krüger C, Schüßler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223

    PubMed  Google Scholar 

  • Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984

    PubMed  Google Scholar 

  • Leal PL, Stürmer SL, Siqueira JO (2009) Occurrence and diversity of arbuscular mycorrhizal fungi in trap cultures from soils under different land use systems in the Amazon, Brazil. Braz J Microbiol 40(1):111–121

    PubMed Central  PubMed  Google Scholar 

  • Lee J, Lee S, Young JPW (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65:339–349

    CAS  PubMed  Google Scholar 

  • Li C, Hao X, Zhao M, Han G, Willms WD (2008) Influence of historic sheep grazing on vegetation and soil properties of a Desert Steppe in Inner Mongolia. Agr Ecosyst Environ 128:109–116

    Google Scholar 

  • Li XL, Gai JP, Cai XB, Li XL, Christie P, Zhang FS, Zhang JL (2014) Molecular diversity of arbuscular mycorrhizal fungi associated with two co-occurring perennial plant species on a Tibetan altitudinal gradient. Mycorrhiza 24:95–107

    PubMed  Google Scholar 

  • Lin X, Feng Y, Zhang H, Chen R, Wang J, Zhang J, Chu H (2012) Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in North China revealed by 454 pyrosequencing. Environ Sci Technol 46:5764–5771

    CAS  PubMed  Google Scholar 

  • Lingfei L, Anna Y, Zhiwei Z (2005) Seasonality of arbuscular mycorrhizal symbiosis and dark septate endophytes in a grassland site in southwest China. FEMS Microbiol Ecol 54:367–373

    PubMed  Google Scholar 

  • Liu Y, Shi G, Mao L, Cheng G, Jiang S, Ma X, An L, Du G, Johnson NC, Feng H (2012) Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytol 194:523–535

    CAS  PubMed  Google Scholar 

  • Lugo MA, Cabello MN (2002) Native arbuscular mycorrhizal fungi (AMF) from mountain grassland (Córdoba, Argentina) I. Seasonal variation of fungal spore diversity. Mycologia 94(4):579–586

    PubMed  Google Scholar 

  • Lugo MA, Maza MEG, Cabello MN (2003) Arbuscular mycorrhizal fungi in a mountain grassland II: seasonal variation of colonization studied, along with its relation to grazing and metabolic host type. Mycologia 95:407–415

    PubMed  Google Scholar 

  • Lutgen ER, Muir-Clairmont D, Graham J, Rillig MC (2003) Seasonality of arbuscular mycorrhizal hyphae and glomalin in a western Montana grassland. Plant and Soil 257:71–83

    CAS  Google Scholar 

  • Mandyam K, Jumpponen A (2008) Seasonal and temporal dynamics of arbuscular mycorrhizal and dark septate endophytic fungi in a tallgrass prairie ecosystem are minimally affected by nitrogen enrichment. Mycorrhiza 18:145–155

    PubMed  Google Scholar 

  • Mariotte P, Meugnier C, Johnson D, Thébault A, Spiegelberger T, Buttler A (2013) Arbuscular mycorrhizal fungi reduce the differences in competitiveness between dominant and subordinate plant species. Mycorrhiza 23:267–277

    PubMed  Google Scholar 

  • Mathimaran N, Ruh R, Jama B, Verchot L, Frossard E, Jansa J (2007) Impact of agricultural management on arbuscular mycorrhizal fungal communities in Kenyan ferralsol. Agr Ecosyst Environ 119:22–32

    Google Scholar 

  • McCain KNS, Wilson GWT, Blair JM (2011) Mycorrhizal suppression alters plant productivity and forb establishment in a grass-dominated prairie restoration. Plant Ecol 212:1675–1685

    Google Scholar 

  • McGonigle T, Fitter A (1990) Ecological specificity of vesicular-arbuscular mycorrhizal associations. Mycol Res 94:120–122

    Google Scholar 

  • Menéndez AB, Scervino JM, Godeas AM (2001) Arbuscular mycorrhizal populations associated with natural and cultivated vegetation on a site of Buenos Aires province, Argentina. Biol Fertil Soils 33:373–381

    Google Scholar 

  • Montero Sommerfeld H, Díaz LM, Alvarez M, Añazco Villanueva C, Matus F, Boon N, Boeckx P, Huygens D (2013) High winter diversity of arbuscular mycorrhizal fungal communities in shallow and deep grassland soils. Soil Biol Biochem 65:236–244

    CAS  Google Scholar 

  • Moora M, Zobel M (1996) Effect of arbuscular mycorrhiza on inter-and intraspecific competition of two grassland species. Oecologia 108:79–84

    Google Scholar 

  • Munkvold L, Kjøller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 64:357–364

    Google Scholar 

  • Murakoshi T, Tojo M, Walker C, Saito M (1998) Arbuscular mycorrhizal fungi on adjacent semi-natural grasslands with different vegetation in Japan. Mycoscience 39:455–462

    Google Scholar 

  • Murugan R, Loges R, Taube F, Joergensen RG (2013) Specific response of fungal and bacterial residues to one-season tillage and repeated slurry application in a permanent grassland soil. Appl Soil Ecol 72:31–40

    Google Scholar 

  • Newsham K, Fitter A, Watkinson A (1995) Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J Ecol 83:991–1000

    Google Scholar 

  • Numata M (1961) Ecology of grasslands in Japan. J Coll Arts Sci Chiba Univ 13:327–342

    Google Scholar 

  • O’Dea M (2007) Influence of mycotrophy on native and introduced grass regeneration in a semiarid grassland following burning. Restor Ecol 15:149–155

    Google Scholar 

  • O’Donnell AG, Seasman M, Macrae A, Waite I, Davies JT (2001) Plants and fertilisers as drivers of change in microbial community structure and function in soils. Plant and Soil 232:135–145

    Google Scholar 

  • O’Donnell AG, Young IM, Rushton SP, Shirley MD, Crawford JW (2007) Visualization, modelling and prediction in soil microbiology. Nat Rev Microbiol 5:689–699

    PubMed  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl Environ Microbiol 69:2816–2824

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Wiemken A, Boller T (2009) Distinct sporulation dynamics of arbuscular mycorrhizal fungal communities from different agroecosystems in long-term microcosms. Agr Ecosyst Environ 134:257–268

    Google Scholar 

  • Ohsowski BM, Zaitsoff PD, Öpik M, Hart MM (2014) Where the wild things are: looking for uncultured Glomeromycota. New Phytol 204:171–179

    PubMed  Google Scholar 

  • Öpik M, Moora M, Liira J, Kõljalg U, Zobel M, Sen R (2003) Divergent arbuscular mycorrhizal fungal communities colonize roots of Pulsatilla spp. in boreal Scots pine forest and grassland soils. New Phytol 160:581–593

    Google Scholar 

  • Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier U, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241

    PubMed  Google Scholar 

  • Parton WJ, Scurlock JMO, Ojima DS, Gilmanov TG, Scholes RJ, Schimel DS, Kirchner T, Menaut JC, Seastedt T, Moya EG, Kamnalrut A, Kinyamario JL (1993) Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochem Cycles 7:785–809

    CAS  Google Scholar 

  • Pezzani F, Montaña C, Guevara R (2006) Associations between arbuscular mycorrhizal fungi and grasses in the successional context of a two-phase mosaic in the Chihuahuan Desert. Mycorrhiza 16:285–295

    PubMed  Google Scholar 

  • Plenchette C, Clermont-Dauphin C, Meynard J, Fortin J (2005) Managing arbuscular mycorrhizal fungi in cropping systems. Can J Plant Sci 85:31–40

    Google Scholar 

  • Pringle A, Bever JD (2002) Divergent phenologies may facilitate the coexistence of arbuscular mycorrhizal fungi in a North Carolina grassland. Am J Bot 89:1439–1446

    PubMed  Google Scholar 

  • Raiesi F, Asadi E (2006) Soil microbial activity and litter turnover in native grazed and ungrazed rangelands in a semiarid ecosystem. Biol Fertil Soils 43:76–82

    Google Scholar 

  • Read D, Koucheki H, Hodgson J (1976) Vesicular‐arbuscular mycorrhiza in natural vegetation systems. New Phytol 77:641–653

    Google Scholar 

  • Redecker D (2000) Specific PCR primers to identify arbuscular mycorrhizal fungi within colonized roots. Mycorrhiza 10:73–80

    CAS  Google Scholar 

  • Redecker D, Raab P (2006) Phylogeny of the Glomeromycota (arbuscular mycorrhizal fungi): recent developments and new gene markers. Mycologia 98:885–895

    PubMed  Google Scholar 

  • Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531

    PubMed  Google Scholar 

  • Renker C, Weißhuhn K, Kellner H, Buscot F (2006) Rationalizing molecular analysis of field-collected roots for assessing diversity of arbuscular mycorrhizal fungi: to pool, or not to pool, that is the question. Mycorrhiza 16:525–531

    CAS  PubMed  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    CAS  PubMed  Google Scholar 

  • Rillig MC, Wright SF, Eviner VT (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant and Soil 238:325–333

    CAS  Google Scholar 

  • Rillig MC, Maestre FT, Lamit LJ (2003) Microsite differences in fungal hyphal length, glomalin, and soil aggregate stability in semiarid Mediterranean steppes. Soil Biol Biochem 35:1257–1260

    CAS  Google Scholar 

  • Roy-Bolduc A, Hijri M (2011) The use of mycorrhizae to enhance phosphorus uptake: a way out of the phosphorus crisis. J Biofert Biopest 2:1

    Google Scholar 

  • Saito K, Suyama Y, Sato S, Sugawara K (2004) Defoliation effects on the community structure of arbuscular mycorrhizal fungi based on 18S rDNA sequences. Mycorrhiza 14:363–373

    CAS  PubMed  Google Scholar 

  • Sanders I, Fitter A (1992) Evidence for differential responses between host-fungus combinations of vesicular-arbuscular mycorrhizas from a grassland. Mycol Res 96:415–419

    Google Scholar 

  • Sanjari G, Ghadiri H, Ciesiolka CA, Yu B (2008) Comparing the effects of continuous and time-controlled grazing systems on soil characteristics in Southeast Queensland. Soil Res 46:348–358

    Google Scholar 

  • Santos JC, Finlay RD, Tehler A (2006) Molecular analysis of arbuscular mycorrhizal fungi colonising a semi-natural grassland along a fertilisation gradient. New Phytol 172:159–168

    CAS  PubMed  Google Scholar 

  • Santos-González JC, Finlay RD, Tehler A (2007) Seasonal dynamics of arbuscular mycorrhizal fungal communities in roots in a seminatural grassland. Appl Environ Microbiol 73:5613–5623

    PubMed Central  PubMed  Google Scholar 

  • Saravesi K, Ruotsalainen A, Cahill J (2014) Contrasting impacts of defoliation on root colonization by arbuscular mycorrhizal and dark septate endophytic fungi of Medicago sativa. Mycorrhiza 24:239–245

    CAS  PubMed  Google Scholar 

  • Scheublin TR, Van Logtestijn RSP, van der Heijden MGA (2007) Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. J Ecol 95:631–638

    CAS  Google Scholar 

  • Schnoor TK, Lekberg Y, Rosendahl S, Olsson PA (2011a) Mechanical soil disturbance as a determinant of arbuscular mycorrhizal fungal communities in semi-natural grassland. Mycorrhiza 21:211–220

    PubMed  Google Scholar 

  • Schnoor TK, Mårtensson L-M, Olsson PA (2011b) Soil disturbance alters plant community composition and decreases mycorrhizal carbon allocation in a sandy grassland. Oecologia 167:809–819

    PubMed  Google Scholar 

  • Schocha CL, Seifertb KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W (2012) Fungal barcoding consortium, nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A 109:6241–6246

    Google Scholar 

  • Schüßler A, Walker C (2010) The glomeromycota: a species list with new families and new genera 1–58 Libraries at The Royal Botanic Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University. www.amf-phylogeny.com

  • Schüßler A, Gehrig H, Schwarzott D, Walker C (2001) Analysis of partial Glomales SSU rRNA gene sequences: implications for primer design and phylogeny. Mycol Res 105:5–15

    Google Scholar 

  • Shi P, Abbott L, Banning N, Zhao B (2012) Comparison of morphological and molecular genetic quantification of relative abundance of arbuscular mycorrhizal fungi within roots. Mycorrhiza 22:501–513

    CAS  PubMed  Google Scholar 

  • Šmilauerová M, Lokvencová M, Šmilauer P (2012) Fertilization and forb: graminoid ratio affect arbuscular mycorrhiza in seedlings but not adult plants of Plantago lanceolata. Plant and Soil 351:309–324

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Smith M, Hartnett D, Rice C (2000) Effects of long-term fungicide applications on microbial properties in tallgrass prairie soil. Soil Biol Biochem 32:935–946

    CAS  Google Scholar 

  • Spurgeon DJ, Keith AM, Schmidt O, Lammertsma DR, Faber JH (2013) Land-use and land-management change: relationships with earthworm and fungi communities and soil structural properties. BMC Ecol 13:46. doi:10.1186/1472-6785-13-46

    PubMed Central  PubMed  Google Scholar 

  • Stockinger H, Walker C, Schüßler A (2009) ‘Glomus intraradices DAOM197198’, a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytol 183:1176–1187

    PubMed  Google Scholar 

  • Stockinger H, Krüger M, Schüßler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187:461–474

    CAS  PubMed  Google Scholar 

  • Stover HJ, Thorn RG, Bowles JM, Bernards MA, Jacobs CR (2012) Arbuscular mycorrhizal fungi and vascular plant species abundance and community structure in tallgrass prairies with varying agricultural disturbance histories. Appl Soil Ecol 60:61–70

    Google Scholar 

  • Stürmer SL (2012) A history of the taxonomy and systematics of arbuscular mycorrhizal fungi belonging to the phylum Glomeromycota. Mycorrhiza 22:247–258

    PubMed  Google Scholar 

  • Su Y-Y, Guo L-D (2007) Arbuscular mycorrhizal fungi in non-grazed, restored and over-grazed grassland in the Inner Mongolia steppe. Mycorrhiza 17:689–693

    PubMed  Google Scholar 

  • Subramanian KS, Charest C (1999) Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought-stressed and well-watered conditions. Mycorrhiza 9:69–75

    CAS  Google Scholar 

  • Sýkorová Z, Ineichen K, Wiemken A, Redecker D (2007) The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza 18:1–14

    PubMed  Google Scholar 

  • Tsuchida K, Nonaka M (2002) Effect of the indigenous arbuscular mycorrhizal fungi (AMF) on growth of the grass in a grassland. Jap J Soil Sci Plant Nutr 73:485–491

    Google Scholar 

  • Tsuchida K, Nonaka M (2003) Effect of arbuscular mycorrhizal fungi (AMF) on growth of orchardgrass Japanese. Jap J Soil Sci Plant Nutr 74:23–29

    Google Scholar 

  • van der Heijden MG (2003) Arbuscular mycorrhizal fungi as a determinant of plant diversity: in search of underlying mechanisms and general principles. In: Sanders IR, Marcel GA, van der Heijden MGA (eds) Mycorrhizal Ecology. Springer, Heidelberg, pp 243–265

    Google Scholar 

  • van der Heijden MG, Klironomos JN, Ursic M, Moutoglis P, Engel RS, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Google Scholar 

  • van der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310

    PubMed  Google Scholar 

  • Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12:3085–3095

    CAS  PubMed  Google Scholar 

  • Verbruggen E, Roling WFM, Gamper HA, Kowalchuk GA, Verhoef HA, van der Heijden MGA (2010) Positive effects of organic farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol 186:968–979

    CAS  PubMed  Google Scholar 

  • Wetzel K, Silva G, Matczinski U, Oehl F, Fester T (2014) Superior differentiation of arbuscular mycorrhizal fungal communities from till and no-till plots by morphological spore identification when compared to T-RFLP. Soil Biol Biochem 72:88–96

    CAS  Google Scholar 

  • Whitcomb S, Stutz JC (2007) Assessing diversity of arbuscular mycorrhizal fungi in a local community: role of sampling effort and spatial heterogeneity. Mycorrhiza 17:429–437

    PubMed  Google Scholar 

  • Wilson J, Trinick M (1983) Infection development and interactions between vesicular-arbuscular mycorrhizal fungi. New Phytol 93:543–553

    Google Scholar 

  • Wright S, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil 198:97–107

    CAS  Google Scholar 

  • Wright S, Starr J, Paltineanu I (1999) Changes in aggregate stability and concentration of glomalin during tillage management transition. Soil Sci Soc Am J 63:1825–1829

    CAS  Google Scholar 

  • Wuen K, Saito S, Sato S, Sugawara K (2002) Arbuscular mycorrhizal colonization and sporulation in rhizosphere of common species on native and sown grasslands. Grassl Sci 48:248–253

    Google Scholar 

  • Yamane Y, Nishiwaki A, Sugawara K, Saito M (1999) Arbuscular mycorrhizal colonization in the plant roots of Miscanthus sinensis, Zoysia japonica, and orchardgrass. Grassl Sci 45(appendix):196–197 (In Japanese)

    Google Scholar 

  • Yang C, Hamel C, Schellenberg MP, Perez JC, Berbara RL (2010) Diversity and functionality of arbuscular mycorrhizal fungi in three plant communities in Semiarid Grasslands National Park. Microb Ecol 59:724–733

    PubMed  Google Scholar 

  • Yang W, Yong Z, Cheng G, Xinhua H, Qiong D, Yongchan K, Yichao R, Shiping W, Liang-Dong G (2013) The arbuscular mycorrhizal fungal community response to warming and grazing differs between soil and roots on the Qinghai-Tibetan Plateau. PLoS One 8:e76447. doi:10.1371/journal.pone.0076447

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yates CJ, Norton DA, Hobbs RJ (2000) Grazing effects on plant cover, soil and microclimate in fragmented woodlands in south-western Australia: implications for restoration. Austral Ecol 25:36–47

    Google Scholar 

  • Young JPW (2012) A molecular guide to the taxonomy of arbuscular mycorrhizal fungi. New Phytol 193:823–826

    CAS  PubMed  Google Scholar 

  • Zaller JG, Heigl F, Grabmaier A, Lichtenegger C, Piller K, Allabashi R, Frank T, Drapela T (2011) Earthworm-mycorrhiza interactions can affect the diversity, structure and functioning of establishing model grassland communities. PLoS One 6:e29293

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zangaro W, de Assis RL, Rostirola LV, de Souza PB, Gonçalves MC, Andrade G, Nogueira MA (2008) Changes in arbuscular mycorrhizal associations and fine root traits in sites under different plant successional phases in southern Brazil. Mycorrhiza 19:37–45

    PubMed  Google Scholar 

  • Zangaro W, Rostirola LV, de Souza PB, de Alves RA, Lescano LEAM, Rondina ABL, Nogueira MA, Carrenho R (2013) Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil. Mycorrhiza 23:221–233

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoko Kojima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kojima, T., Jenkins, S., Weerasekara, A., Fan, JW. (2014). Arbuscular Mycorrhizal Diversity and Function in Grassland Ecosystems. In: Solaiman, Z., Abbott, L., Varma, A. (eds) Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration. Soil Biology, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45370-4_9

Download citation

Publish with us

Policies and ethics