Advertisement

Mycorrhizal Inoculum Production

  • Shivom Singh
  • Kajal Srivastava
  • Suvigya Sharma
  • A. K. SharmaEmail author
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 41)

Abstract

Arbuscular mycorrhizal (AM) fungi are ecologically important for most vascular plants for their growth and survival and act as obligate symbionts. At present, commercial AM fungal inocula are produced in nursery plots, containers with different substrates and plants, and aeroponic and hydroponic systems and in vitro. Different methodologies are required to recover and achieve continuous pure AM fungal inoculum without losing its potential. Most methods are cost-effective and valuable tools for production of inoculum at a large scale. Indeed, there are a number of entrepreneurs developing and marketing inocula of AM fungi, but there remain technical difficulties for commercial utilization. Furthermore, to avoid negligence, awareness should be raised in the public about the potential of mycorrhizal technology for sustainable plant production and soil conservation.

Keywords

Arbuscular Mycorrhizal Fungus Arbuscular Mycorrhizal Mycorrhizal Plant Fungal Inoculum Plant Protection Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Barea JM (2000) Rhizosphere and mycorrhiza of field crops. In: Balazs E, Galante E, Lynch JM, Schepers JS, Toutan JP, Werner D, Werry PA (eds) Biological resource management: connecting science and policy (OECD). Springer, Berlin, pp 110–125Google Scholar
  2. Bécard G, Fortin JA (1988) Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218CrossRefGoogle Scholar
  3. Bécard G, Piché Y (1992) Establishment of vesicular-arbuscular mycorrhiza in root organ culture: review and proposed methodology. In: Norris J, Read D, Varma A (eds) Techniques for the study of mycorrhiza. Academic, New York, pp 89–108Google Scholar
  4. Brundrett MC, Abbott LK, Jasper DA (1999) Glomalean mycorrhizal fungi from tropical Australia. 1. Comparison of the effectiveness and specificity of different isolation procedures. Mycorrhiza 8:305–314CrossRefGoogle Scholar
  5. Butcher DN (1980) The culture of isolated roots. In: Ingram DS, Helgelson JP (eds) Tissue culture methods for plant pathologists. Blackwell, Oxford, pp 13–17Google Scholar
  6. Butcher DN, Street HE (1964) Excised root culture. Bot Rev 30:513–586CrossRefGoogle Scholar
  7. Carruthers S (1992) Aeroponics system review. Practical Hydroponics, July/August issue, pp 18–21Google Scholar
  8. Chabot S, Bécard G, Piché Y (1992) Life cycle of Glomus intraradices in root organ culture. Mycologia 84:315–321CrossRefGoogle Scholar
  9. Chellappan P, Anitha Christy SA, Mahadevan A (2002) Multiplication of arbuscular mycorrhizal fungi on roots. In: Mukerji KG, Manoharachary C, Chamola BP (eds) Techniques in mycorrhizal studies. Kluwer, Dordrecht, pp 285–297CrossRefGoogle Scholar
  10. Cost Action 8.38 (2001) Managing arbuscular mycorrhizal fungi for improving soil quality and plant health in agriculture. In: Gianinazzi S (ed) Report of 1999 Activity – EUR 19687. European Commission, Directorate-General for Research, LuxembourgGoogle Scholar
  11. Cress WA, Throneberry GO, Lindsey DL (1979) Kinetics of phosphorus absorption by mycorrhizal and nonmycorrhizal tomato roots. Plant Physiol 64:484–487PubMedCentralPubMedCrossRefGoogle Scholar
  12. Cress WA, Johnson GV, Barton LL (1986) The role of endomycorrhizal fungi in iron uptake by Hilaria jamesii. J Plant Nutr 9:547–556CrossRefGoogle Scholar
  13. Declerk S, Strullu DG, Plenchette C (1996) In vitro mass production of the arbuscular mycorrhizal fungus Glomus versiforme associated with Ri T-DNA transformed carrot roots. Mycol Res 100:1237–1242CrossRefGoogle Scholar
  14. Diop TA (1990) Méthodes axéniques de production d’inocula endomycorhiziens à vésicules et à arbuscules: étude avec le Gigaspora margarita. MSc Thesis, University of Laval, QuebecGoogle Scholar
  15. Diop TA (1995) Ecologie des champignons mycorhiziens à vésicules et à arbuscules associés à Acacia albida (del) dans les zones sahéliennes et soudano-guinéennes du Sénégal. Thèse de docteur en Biologie et Physiologie végétales, Angers, FranceGoogle Scholar
  16. Diop TA (2003) In vitro culture of arbuscular mycorrhizal fungi: advances and future prospects. Afr J Biotechnol 2(12):692–697Google Scholar
  17. Diop TA, Becard G, Piché Y (1992) Long-term in vitro culture of an endomycorrhizal fungus, Gigaspora margarita, on Ri T-DNA transformed root of carrot. Symbiosis 12:249–259Google Scholar
  18. Dodd JC, Arias I, Kooman I, Hayman DS (1990) The management of populations of vesicular-arbuscular mycorrhizal fungi in acid-infertile soils of a savanna ecosystem II. The effects of pre-crops on the spore populations of native and introduced VAM fungi. Plant Soil 122:241–248CrossRefGoogle Scholar
  19. Douds DD, Gadkar V, Adholeya A (2000) Mass production of VAM fungus biofertilizer. In: Mukerji KG, Chamola BP, Singh J (eds) Mycorrhizal biology. Kluwer, New York, pp 197–215CrossRefGoogle Scholar
  20. Douds DD, Nagahashi G Jr, Pfeffer PE, Kayser WM, Reider C (2005) On farm production and utilization of arbuscular mycorrhizal fungus inoculum. Can J Plant Sci 85:15–21CrossRefGoogle Scholar
  21. Dugassa DG, Grunewaldt-Stöcker G, Schönbeck F (1995) Growth of Glomus intraradices and its effect on linseed (Linum usitatissimum L.) in hydroponic culture. Mycorrhiza 5:279–282Google Scholar
  22. Elmes RP, Mosse B (1984) vesicular arbuscular endomycorrhizal inoculum production. II. Experiments with maize (Zea mays) and other hosts in nutrient flow culture. Can J Bot 62:1531–1536CrossRefGoogle Scholar
  23. Elmes RP, Hepper CM, Hayman DS, O’Shea J (1984) the use of vesicular arbuscular mycorrhizal root by the nutrient film technique as inoculum for field sites. Ann Appl Biol 104:437–441CrossRefGoogle Scholar
  24. Elsen A, Declerck S, De Waele D (2001) Effects of Glomus intraradices on the reproduction of the burrowing nematode (Radopholus similis) in dixenic culture. Mycorrhiza 11:49–51CrossRefGoogle Scholar
  25. Feldmann F, Grotkass C (2002) Directed inoculum production – shall we be able to design populations of arbuscular mycorrhizal fungi to achieve predictable symbiotic effectiveness? In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture: from genes to bioproducts. Birkhäuser, Basel, pp 223–233Google Scholar
  26. Fortin JA, Bécard G, Declerck S, Dalpé Y, St-Arnaud M, Coughan AP, Piché Y (2002) Arbuscular mycorrhiza on root-organ cultures. Can J Bot 80:1–20CrossRefGoogle Scholar
  27. Ganesan V, Mahadevan A (1998) The role of mycorrhizae in the improvement of tuber crops in pot and field conditions. In: Prakash A (ed) Fungi in biotechnology. CBS, New Delhi, pp 51–58Google Scholar
  28. Gaur A (1997) Inoculum production technology development of vesicular-arbuscular mycorrhizae. PhD thesis, University of Delhi, Delhi, IndiaGoogle Scholar
  29. Gianinazzi S, Gianinazzi-Pearson V (1988) Mycorrhizae: a plant’s health insurance. Chim Oggi Oct:56–58Google Scholar
  30. Gianinazzi S, Vosátka M (2004) Inoculum of arbuscular mycorrhizal fungi for production systems: science meets business. Can J Bot 82:1264–1271CrossRefGoogle Scholar
  31. Gryndler M (2000) Interactions of arbuscular mycorrhizal fungi with other soil organisms. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, pp 239–262CrossRefGoogle Scholar
  32. Heinzemann J, Weritz J (1990) Rockwool: a new carrier system for mass multiplication of vesicular-arbuscular mycorrhizal fungi. Angew Bot 64:271–274Google Scholar
  33. Howeler RH (1985) Mineral nutrition and fertilization of cassava (Manihot esculenta Crantz). CIAT, Cali, ColombiaGoogle Scholar
  34. Howeler RH, Asher CJ, Edwards DG (1982) Establishment of an effective endomycorrhizal association on cassava in flowing solution and its effects on phosphorus nutrition. New Phytol 90:229–238CrossRefGoogle Scholar
  35. Hung LL, Sylvia DM (1987) VAM inoculum production in aeroponic culture. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhizae in the next decade practical applications and research priorities. Proceedings of the 7th NACOM, IFAS, University of Florida, Gainesville, pp 272–273Google Scholar
  36. Hung LL, Sylvia DM (1988) Production of vesicular-arbuscular mycorrhizal fungus inoculum in aeroponic culture. Appl Environ Microbiol 54:353–357PubMedCentralPubMedGoogle Scholar
  37. Hung LL, O’Keefe DM, Sylvia DM (1991) Use of hydrogel as a sticking agent and carrier for vesicular–arbuscular mycorrhizal fungi. Mycol Res 95:427–429CrossRefGoogle Scholar
  38. Janos DP (1980) Mychorrhizae influence on tropical succession. Biotropica 12:56–64CrossRefGoogle Scholar
  39. Karunaratne S, Baker JH, Barker AV (1986) Phosphorus uptake by mycorrhizal and nonmycorrhizal roots of soybean. J Plant Nutr 9:1303–1313CrossRefGoogle Scholar
  40. Leyval C, Joner EJ, del Val C, Haselwandter K (2002) Potential of arbuscular mycorrhizal fungi for bioremediation. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser, Basel, pp 175–186CrossRefGoogle Scholar
  41. MacDonald RM (1981) Routine production of axenic vesicular arbuscular mycorrhizal. New Phytol 89:87–93CrossRefGoogle Scholar
  42. Mallesha BC, Bagyaraj DJ, Pai G (1992) Perlite-soilrite mix as a carrier for mycorrhizal and rhizobia to inoculate Leucaena leucocephala. Leucaena Res Rep 13:32–33Google Scholar
  43. Martin-Laurent F, Lee SK, Tham FY, He J, Diem HG, Durand P (1997) A new approach to enhance growth and nodulation of Acacia mangium through aeroponic culture. Biol Fertil Soils 5:7–12CrossRefGoogle Scholar
  44. Mathew J, Johri BN (1988) Propagation of vesicular arbuscular mycorrhizal fungi in moong (Vigna radiata L.) through nutrient film technique. Curr Sci 57:156–158Google Scholar
  45. Mosse B (1962) The establishment of vesicular arbuscular mycorrhizal under aseptic conditions. J Gen Microbiol 27:509–520PubMedCrossRefGoogle Scholar
  46. Mosse B, Thompson JP (1984) Vesicular-arbuscular endomycorrhizal inoculum production. I. Exploratory experiments with beans (Phaseolus vulgaris) in nutrient flow culture. Can J Bot 62:1523–1530CrossRefGoogle Scholar
  47. Nopamornbodi O, Thamsurakul S, Vasuvat Y (1987) Effect of VAM on growth, yield and phosphorus absorption of soybean and mungbean in Thailand. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhizae in the next decade practical applications and research priorities. Proceedings of the 7th NACOM, IFAS, University of Florida, Gainesville, pp 52Google Scholar
  48. Peuss H (1958) Untersuchungen zur Ökologie und Bedeutung der Tabakmycorrhiza. Arch Microbiol 29:112–142Google Scholar
  49. Potty VP (1985) Cassava as alternate host for multiplication of VAM fungi. Plant Soil 88:135–137CrossRefGoogle Scholar
  50. Raja P, Mahadevan A (1991) Axenic cultivation of VAM fungi – a review. J Plant Res 7:1–6Google Scholar
  51. Redecker D, Thierfelder H, Werner D (1995) A new cultivation system for arbuscular-mycorrhizal fungi on glass beads. Angewandte Botanic 69:189–191Google Scholar
  52. Reider C, Herdman WR, Drinkwater LE, Janke R (2000) Yields and nutrient budgets under composts, raw dairy manure and mineral fertilizer. Compost Sci Util 8:328–339CrossRefGoogle Scholar
  53. Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515PubMedCrossRefGoogle Scholar
  54. Selvaraj T, Kim H (2004) Use of sucrose-agar globule with root-exudates for mass production of vesicular arbuscular mycorrhizal fungi. J Microbiol 42:60–63PubMedGoogle Scholar
  55. Sharma AK, Singh C, Akhauri P (2000) Mass culture of Arbuscular mycorrhizal fungi and their role in biotechnology. Proc Natl Acad Sci India 4 & 5:223–238Google Scholar
  56. Sieverding E (1987) On-farm production of VAM inoculum. In: Sylvia DM, Hung LL, Graham JH (eds) Proceedings of the 7th North American conference on mycorrhiza, Gainesville, FL, pp 284Google Scholar
  57. Sieverding E (1991) Inoculum production. Vesicular–arbuscular mycorrhiza management in tropical agroecosystems. Deutsche Gesellschaft fur Technische Zusammenarbeit, Bremer, Germany, pp 223–246Google Scholar
  58. Singh S, Srivastava K, Badola JC, Sharma AK (2012) Aeroponic production of AMF inoculum and its application for sustainable agriculture. Wudpecker J Agric Res 1(6):186–190Google Scholar
  59. Srivastava K, Sharma AK (2011) Arbuscular mycorrhizal fungi in challenging environment – a prospective. In: Fulton SM (ed) Mycorrhizal fungi: soil, agriculture, and environmental implications. Nova, New York, pp 1–35Google Scholar
  60. Sreenivasa MN (1992) Selection of an efficient vascular arbuscular mycorhizzal fungus for chilli. Sci Hortic 50:515–519CrossRefGoogle Scholar
  61. Strullu DG, Romand C (1987) Culture axénique de vésicules isolées à partir d’endomycorhizes et ré-association in vitro à des racines de tomate. C R Acad Sci Paris Sér III 305:15–19Google Scholar
  62. Sylvia DM (1990) Inoculation of native woody plants with vesicular- arbuscular fungi for phosphate-mine land reclamation. Agric Ecosyst Environ 31:253–261CrossRefGoogle Scholar
  63. Sylvia DM, Hubbel DH (1986) Growth and sporulation of vesicular-arbuscular mycorrhizal fungi in aeroponic and membrane systems. Symbiosis 1:259–267Google Scholar
  64. Sylvia DM, Jarstfer AG (1992a) Sheared-root inocula of vesicular-arbuscular mycorrhizal fungi. Appl Environ Microbiol 58:229–232PubMedCentralPubMedGoogle Scholar
  65. Sylvia DM, Jarstfer AG (1992b) Sheared roots as a VA-mycorrhizal inoculum and methods for enhancing plant growth. US Patent 5,096,481, Mar 17Google Scholar
  66. Tarafdar JC (1995) Role of a VA mycorrhizal fungus on growth and water relation in wheat in presence of organic and inorganic phosphorus. J Ind Soc Soil Sci 43:200–204Google Scholar
  67. Tommerup IC (1987) Physiology and ecology of VAM spore germination and dormancy in soil. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhizae in the next decade practical applications and research priorities. Proceedings of the 7th NACOM, IFAS, University of Florida, Gainesville, pp 175–177Google Scholar
  68. Turnau K, Haselwandter K (2002) Arbuscular mycorrhizal fungi, an essential component of soil microflora in ecosystem restoration. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser, Basel, pp 137–150CrossRefGoogle Scholar
  69. Von Alten H, Blal B, Dodd JC, Feldmann F, Vosátka M (2002) Quality control of arbuscular mycorrhizal fungi inoculum in Europe. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser, Basel, pp 223–234Google Scholar
  70. White PR (1943) A handbook of plant tissue culture. J Cattel, Lancaster, PACrossRefGoogle Scholar
  71. Wood T (1985) Commercial pot culture inoculum production: quality control and other headaches. In: Molina R (ed) Proceedings of the 6th North American conference on mycorrhizae, Bend, OR. Forest Research Laboratory, pp 84Google Scholar
  72. Zobel RW, Del Tredici P, Torry JC (1976) Method for growing plants aeroponically. Plant Physiol 57:344–346PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Shivom Singh
    • 1
  • Kajal Srivastava
    • 2
  • Suvigya Sharma
    • 2
  • A. K. Sharma
    • 2
    Email author
  1. 1.Department of Environmental ScienceITM UniversityGwaliorIndia
  2. 2.Department of Biological Sciences, CBSHG. B. Pant University of Agriculture and TechnologyPantnagarIndia

Personalised recommendations