Biofertilizers with Arbuscular Mycorrhizal Fungi in Agriculture

  • Olmar B. WeberEmail author
Part of the Soil Biology book series (SOILBIOL, volume 41)


An increase in crop production is essential to meet the future food demand. Agricultural systems should be sustained by maintaining soil fertility and soil structure by effective use of fertilizers with increased profitability and reduced harm to the environment. Other strategies involve application of ecological concepts and principles to the design, development, and management of sustainable agricultural systems. Microbial inoculants, including arbuscular mycorrhizal (AM) fungi and plant growth-promoting rhizobacteria, for increasing the efficient use of fertilizers are potential components of such management. AM fungal inoculants have been marketed as an important biological component to the commercial horticulture and agriculture. This review considers biofertilizers within the framework of fertilizer demand and use of AM fungal inocula.


Arbuscular Mycorrhizal Fungal Community Mycorrhizal Colonization Total Root Length Bermuda Grass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This manuscript was prepared in part with support from project AUX-PE-PGGI 267/2010 from the Coordination of Improvement of Higher Education Personnel (Brazil).


  1. Abbott LK, Murphy DV (2007) What is biological fertility? In: Abbott LK, Murphy DV (eds) Soil biological fertility: a key to sustainable land use in agriculture. Springer, Dordrecht, pp 1–15Google Scholar
  2. Abbott LK, Robson AD, Gazey C (1992) Selection of inoculant vesicular-arbuscular mycorrhizal fungi. In: Norris JD, Read DJ, Varma AK (eds) Methods in microbiology, vol 24. Academic Press, London, pp 1–21Google Scholar
  3. Adesemoye O, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12PubMedCrossRefGoogle Scholar
  4. Akhtar SM, Siddiqui ZA (2008) Arbuscular mycorrhizal fungi as potential bioprotectants against plant pathogens. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 61–97CrossRefGoogle Scholar
  5. Allen MF (1996) The ecology of arbuscular mycorrhizas: a look back into the 20th century and a peek into 21st. Mycol Res 100:769–782CrossRefGoogle Scholar
  6. Antunes PM, Koch AM, Dunfield KE, Hart MM, Downing A, Rillig MC, Klironomos JN (2009) Influence of commercial inoculation with Glomus intraradices on the structure and functioning of an AM fungal community from an agricultural site. Plant Soil 317:257–266CrossRefGoogle Scholar
  7. Antunes PM, Koch AM, Morton JB, Rillig MC, Klironomos JN (2011) Evidence for functional divergence in arbuscular mycorrhizal fungi from contrasting climatic origins. New Phytol 189:507–514PubMedCrossRefGoogle Scholar
  8. Aseri GK, Jain N, Panwar J, Rao VA, Meghwal PR (2008) Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of Pomegranate (Punica granatum L.) in Indian Thar Desert. Sci Hortic 117:130–135CrossRefGoogle Scholar
  9. Baar J (2008) From production to application of arbuscular mycorrhizal fungi in agricultural systems: requirements and needs. In: Varma A (ed) Mycorrhiza. Springer, Heidelberg, pp 361–372CrossRefGoogle Scholar
  10. Bainard LD, Klironomos JN, Gordon AM (2011) Arbuscular mycorrhizal fungi in tree-based intercropping systems: a review of their abundance and diversity. Pedobiologia 54:57–61CrossRefGoogle Scholar
  11. Barea JM, Palenzuela J, Cornejo P, Sánchez-Castro I, Navarro-Fernández C, Lopéz-García A, Estrada B, Azcón R, Ferrol N, Azcón-Aguilar C (2011) Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. J Arid Environ 75:1292–1301. doi: 10.1016/j.jaridenv.2011.06.001 CrossRefGoogle Scholar
  12. Boonlue S, Surapat W, Pukahuta C, Suwanarit P, Suwanatit A, Morinaga T (2012) Diversity and efficiency of arbuscular mycorrhizal fungi in soils from organic chili (Capsicum frutescens) farms. Mycoscience 53:10–16CrossRefGoogle Scholar
  13. Bothe H, Turnau K, Regvar M (2010) The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza 20:445–457PubMedCrossRefGoogle Scholar
  14. Brito I, Goss MJ, Carvalho M, van Tuinen Y, Antunes PM (2008) Agronomic management of indigenous mycorrhizas. In: Varma A (ed) Mycorrhiza. Springer, Heidelberg, pp 375–402CrossRefGoogle Scholar
  15. Brito I, Carvalho MD, Goss MJ (2011) Summer survival of arbuscular mycorrhiza extraradical mycelium and the potential for its management through tillage options in Mediterranean cropping systems. Soil Use Manag 27:350–356Google Scholar
  16. Bull CT, Muramoto J, Koike ST, Leap J, Shennan C, Goldman P (2005) Strawberry cultivars and mycorrhizal inoculants evaluated in California organic production fields. Crop Manag 4(1). doi:  10.1094/CM-2005-0527-02-RS
  17. Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84CrossRefGoogle Scholar
  18. Cardoso EJBN, Cardoso IM, Nogueira MA, Baretta CRDM, Paula AM (2010) Micorrizas arbusculares na aquisição de nutrientes pelas plantas. In: Siqueira JO, de Souza FA, Cardoso EJBN, Tsai SM (eds) Micorrizas: 30 anos de experiência no Brasil. Universidade Federal de Lavras (UFLA), Lavras, pp 153–214Google Scholar
  19. Corkidi L, Allen EB, Merhaut D, Allen MF, Downer J, Bohn J, Evans M (2004) Assessing the infectivity of commercial mycorrhizal inoculants in plant nursery conditions. J Environ Hortic 22:149–154Google Scholar
  20. Cuenca G, Cáceres A, González MG (2008) AM inoculation in tropical agriculture: field results. In: Varma A (ed) Mycorrhiza. Springer, Heidelberg, pp 403–417CrossRefGoogle Scholar
  21. Das A, Varma A (2009) Symbiosis: the art of living. In: Varma A, Kharkwal AC (eds) Symbiotic fungi, soil biology, vol 18. Springer, Heidelbereg, pp 1–28CrossRefGoogle Scholar
  22. Djuuna IAF, Abbott LK, Solaiman ZM (2009) Use of mycorrhiza bioassays in ecological studies. In: Varma A, Kharkwal AC (eds) Symbiotic fungi, soil biology, vol 18. Springer, Heidelberg, pp 41–50CrossRefGoogle Scholar
  23. Douds DD Jr, Nagahashi G, Hepperly PR (2010) On-farm production of inoculum of indigenous arbuscular mycorrhizal fungi and assessment of diluents of compost for inoculum production. Bioresour Technol 101:2326–2330PubMedCrossRefGoogle Scholar
  24. Duan T, Facelli E, Smith SE, Smith FA, Nan Z (2011) Differential effects of soil disturbance and plant residue retention on function of arbuscular mycorrhizal (AM) symbiosis are not reflected in colonization of roots or hyphal development in soil. Soil Biol Biochem 43:571–578CrossRefGoogle Scholar
  25. Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280PubMedCentralPubMedCrossRefGoogle Scholar
  26. FAO (Food and Agriculture Organization) of the United Nations (2010) Current world fertilizer trends and outlook to 2014. Available at: Accessed 22 July 2011
  27. Farmer MA, Li X, Feng G, Zhao B, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V, van Tuinen D (2007) Molecular monitoring of field-inoculated AMF to evaluate persistence in sweet potato crops in China. Appl Soil Ecol 35:599–609CrossRefGoogle Scholar
  28. Gentili F, Jumpponen A (2006) Potential and possible uses of bacterial and fungal biofertilizers. In: Rai MK (ed) Handbook of microbial biofertilizers. Food Products Press, New York, pp 1–28Google Scholar
  29. Gogoi P, Singh RP (2011) Differential effect of some arbuscular mycorrhizal fungi on growth of Piper longum L. (Piperaceae). Indian J Sci Technol 4:119–125Google Scholar
  30. Grace EJ, Smith FA, Smith SE (2009) Deciphering the arbuscular mycorrhizal pathway of P uptake in non-responsive plant species. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas – functional processes and ecological impact. Springer, Heidelberg, pp 89–106CrossRefGoogle Scholar
  31. Herrera-Peraza RA, Hamel C, Fernández F, Ferrer RL, Furrazola E (2011) Soil-strain compatibility: the key to effective use of arbuscular mycorrhizal inoculants? Mycorrhiza 21:183–193PubMedCentralPubMedCrossRefGoogle Scholar
  32. IJdo M, Cranenbrouck S, Declerck S (2011) Methods for large-scale production of AM fungi: past, present, and future. Mycorrhiza 21:1–16PubMedCrossRefGoogle Scholar
  33. Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91PubMedCrossRefGoogle Scholar
  34. Jansa J, Mozafar A, Frossard E (2003) Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie 23:481–488CrossRefGoogle Scholar
  35. Javaid A (2010) Beneficial microorganisms for sustainable agriculture. In: Lichtfouse L (ed) Genetic engineering, biofertilisation, soil quality and organic farming, sustainable agriculture. Springer, New York, pp 347–369CrossRefGoogle Scholar
  36. Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322PubMedCrossRefGoogle Scholar
  37. Kabir Z, O’Halloran IP, Fyles JW, Hamel C (1997) Seasonal changes of arbuscular mycorrhizal fungi as affected by tillage practices and fertilization: hyphal density and mycorrhizal root colonization. Plant Soil 192:282–293CrossRefGoogle Scholar
  38. Kahiluoto H, Ketoja E, Vestberg M (2009) Contribution of arbuscular mycorrhiza to soil quality in contrasting cropping systems. Agric Ecosyst Environ 134:36–45CrossRefGoogle Scholar
  39. Kahiluoto H, Ketoja E, Vestberg M (2012) Plant-available P supply is not the main factor determining the benefit from arbuscular mycorrhiza to crop P nutrition and growth in contrasting cropping systems. Plant Soil 350:85–98CrossRefGoogle Scholar
  40. Kaya KC, Ashraf M, Sonmez O, Aydemir S, Tuna AL, Cullu MA (2009) The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hortic 121:1–6CrossRefGoogle Scholar
  41. Killham K (2011) Integrated soil management—moving towards globally sustainable agriculture. J Agric Sci 149:29–36CrossRefGoogle Scholar
  42. Lichtfouse E, Navarrete M, Debaeke P, Souchère V, Alberola C, Ménassieu J (2009) Agronomy for sustainable agriculture: a review. Agron Sustain Dev 29:1–6CrossRefGoogle Scholar
  43. Mardukhi B, Rejali F, Daei G, Ardakani MR, Malakouti MJ, Miransari M (2011) Arbuscular mycorrhizas enhance nutrient uptake in different wheat genotypes at high salinity levels under field and greenhouse conditions. C R Biol 334:564–571PubMedCrossRefGoogle Scholar
  44. Marin M (2006) Arbuscular mycorrhizal inoculation in nursery practice. In: Rai MK (ed) Handbook of microbial biofertilizers. Food Products Press, New York, pp 289–324Google Scholar
  45. Martinez TN, Johnson NC (2010) Agricultural management influences propagule densities and functioning of arbuscular mycorrhizas in low- and high-input agroecosystems in arid environments. Appl Soil Ecol 46:300–306CrossRefGoogle Scholar
  46. Mihov M, Tringovska I (2010) Energy efficiency improvement of greenhouse tomato production by applying new biofertilizers. Bulg J Agric Sci 16:454–458Google Scholar
  47. Miransari M (2011) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol 89:917–930PubMedCrossRefGoogle Scholar
  48. Murphy DV, Stockdale EA, Brookes PC, Gouling KWT (2007) Impact of microorganisms on chemical transformations in soil. In: Abbott LK, Murphy DV (eds) Soil biological fertility: a key to sustainable land use in agriculture. Springer, Dordrecht, pp 37–59Google Scholar
  49. Ngwene B, George E, Claussen W, Neumann E (2010) Phosphorus uptake by cowpea plants from sparingly available or soluble sources as affected by nitrogen form and arbuscular-mycorrhiza-fungalinoculation. J Plant Nutr Soil Sci 173:353–359CrossRefGoogle Scholar
  50. Öpik M, Saks Ü, Kennedy J, Daniell T (2008) Global diversity patterns of arbuscular mycorrhizal fungi–community composition and links with functionality. In: Varma A (ed) Mycorrhiza. Springer, Heidelberg, pp 89–111CrossRefGoogle Scholar
  51. Osorio NW, Habte M (2009) Strategies for utilizing arbuscular mycorrhizal fungi and phosphate-solubilizing microorganisms for enhanced phosphate uptake and growth of plants in the soils of the tropics. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Heidelberg, pp 325–351CrossRefGoogle Scholar
  52. Pellegrino E, Bedini S, Avio L, Bonari E, Giovannetti M (2011) Field inoculation effectiveness of native and exotic arbuscular mycorrhizal fungi in a Mediterranean agricultural soil. Soil Biol Biochem 43:367–376CrossRefGoogle Scholar
  53. Perner H, Schwarz D, Bruns C, Mäder P, George E (2007) Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza 17:469–474PubMedCrossRefGoogle Scholar
  54. Reis VM, Andrade G, Faria SM, Silveira APD (2010) Interações de fungos micorrízicos arbusculares com outros microrganismos do solo. In: Siqueira JO, de Souza FA, Cardoso EJBN, Tsai SM (eds) Micorrizas: 30 anos de experiência no Brasil. Universidade Federal de Lavras (UFLA), Lavras, pp 361–413Google Scholar
  55. Rodriguez-Romero AS, Azcón R, Jaizme-Vega MDC (2011) Early mycorrhization of two tropical crops, papaya (Carica papaya L.) and pineapple [Ananas comosus (L.) Merr.], reduces the necessity of P fertilization during the nursery stage. Fruits 66:3–10CrossRefGoogle Scholar
  56. Rouphael Y, Cardarelli M, Mattia ED, Tullio M, Rea R, Colla G (2010) Enhancement of alkalinity tolerance in two cucumber genotypes inoculated with an arbuscular mycorrhizal biofertilizer containing Glomus intraradices. Biol Fertil Soils 46:499–509CrossRefGoogle Scholar
  57. Saldajeno MGB, Chandanie WA, Kubota M, Hyakumachi AM (2008) Effects of interactions of arbuscular mycorrhizal fungi and beneficial mycoflora on plant growth and disease protection. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 211–226CrossRefGoogle Scholar
  58. Shabani G, Ardakani MR, Chaichi MR, Friedel JK, Khavazi K, Eshghizaderh HR (2011) Effect of different fertilizing systems on seed yield and phosphorus uptake in annual medics under dryland farming conditions. Not Bot Hort Agrobot Cluj 39:191–197Google Scholar
  59. Shalamuk S, Cabello MH, Chidichimo H, Golik S (2011) Effects of inoculation with Glomus mosseae in conventionally tilled and nontilled soils with different levels of nitrogen fertilization on wheat growth, arbuscular mycorrhizal colonization, and nitrogen nutrition. Commun Soil Sci Plant Anal 42:586–598CrossRefGoogle Scholar
  60. Sharma MP, Adholeya A (2011) Developing prediction equations and optimizing production of three AM fungal inocula under on-farm conditions. Exp Agric 47:529–537CrossRefGoogle Scholar
  61. Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems, vol 224. Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ), Eschborn. ISBN 3-88085-462-9Google Scholar
  62. Siqueira JO, Saggin-Júnior OS, Flores-Aylas WF, Guimarães PTG (1998) Arbuscular mycorrhizal inoculation and superphosphate application influence plant development and yield of coffee in Brazil. Mycorrhiza 7:293–300CrossRefGoogle Scholar
  63. Smith SE, Smith FA (2011) Roles of Arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250PubMedCrossRefGoogle Scholar
  64. Solaiman MZ, Abbott LK (2004) Functional diversity of arbuscular mycorrhizal fungi on root surfaces. In: Varma A, Abbott LK, Werner D, Hampp R (eds) Plant Surface Microbiology. Springer, Heidelberg, pp 331–349Google Scholar
  65. Song YY, Zen RS, Xu JF, Li J, Shen X, Yihdego WG (2010) Interplant communication of tomato plants through underground common mycorrhizal networks. PLoS One 5(10):e13324PubMedCentralPubMedCrossRefGoogle Scholar
  66. Stürmer SL, Saggin O Jr (2010) Bancos de germoplasma de Glomeromycota no Brasil. In: Siqueira JO, de Souza FA, Cardoso EJBN, Tsai SM (eds) Micorrizas: 30 anos de experiência no Brasil. Universidade Federal de Lavras (UFLA), Lavras, pp 525–550Google Scholar
  67. Tanu Prakash A, Adholeya A (2006) Potential of arbuscular mycorrhizae in organic farming system. In: Rai MK (ed) Handbook of microbial biofertilizers. Food Products Press, New York, pp 223–239Google Scholar
  68. Tarbell TJ, Koske RE (2007) Evaluation of commercial arbuscular mycorrhizal inocula in a sand/peat medium. Mycorrhiza 18:51–56PubMedCrossRefGoogle Scholar
  69. Thonar C, Shnepf A, Frossard E, Roose T, Jansa J (2011) Traits related to differences in function among three arbuscular mycorrhizal fungi. Plant Soil 339:231–245CrossRefGoogle Scholar
  70. Trejo D, Ferrera-Cerrato R, Garcia R, Varela L, Lara L, Alarcon A (2011) Efectividad de siete consorcios nativos de hongos micorrízicos arbusculares en plantas de café en condiciones de invernadero y campo. Rev Chil Hist Nat 84:23–31CrossRefGoogle Scholar
  71. Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397PubMedCentralPubMedCrossRefGoogle Scholar
  72. Vázquez-Hernández MV, Arévalo-Galarza L, Jaen-Contreras D, Escamilla-García JD, Mora-Aguilera A, Hernández-Castro E, Cibrián-Tovar J, Téliz-Ortiz D (2011) Effect of Glomus mosseae and Entrophospora colombiana on plant growth, production, and fruit quality of ‘Maradol’ papaya (Carica papaya L.). Sci Hortic 128:255–260CrossRefGoogle Scholar
  73. Vestberg M, Kahiluoto H, Wallius E (2011) Arbuscular mycorrhizal fungal diversity and species dominance in a temperate soil with long-term conventional and low-input cropping systems. Mycorrhiza 21:351–361PubMedCrossRefGoogle Scholar
  74. Vosátka M, Albrechtová J (2008) The international market development for mycorrhizal technology. In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics. Springer, Heidelberg, pp 419–438CrossRefGoogle Scholar
  75. Vosátka M, Albrechtova J (2009) Benefits of arbuscular mycorrhizal fungi to sustainable crop production. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Heidelberg, pp 205–225CrossRefGoogle Scholar
  76. Wang X, Pan Q, Chen F, Yan X, Liao H (2011) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21:173–181PubMedCrossRefGoogle Scholar
  77. Weber OB, Souza CCM, Gondin DMF, Oliveira FNS, Crisóstomo LA, Caproni AL, Saggin O Jr (2004) Inoculação de fungos micorrízicos arbusculares e adubação fosfatada em mudas de cajueiro-anão-precoce. Pesq agropec bras 39(5):477–483CrossRefGoogle Scholar
  78. Wiseman PE, Colvin KH, Wells CE (2009) Performance of mycorrhizal products marketed for woody landscape plants. J Environ Hortic 27:41–50Google Scholar
  79. Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166CrossRefGoogle Scholar
  80. Yang C, Hamel C, Schellenberg MP, Perez JC, Berbara RL (2010) Diversity and functionality of arbuscular mycorrhizal fungi in three plant communities in semiarid grasslands national park, Canada. Microb Ecol 59:724–733PubMedCrossRefGoogle Scholar
  81. Yao Q, Wanga LR, Zhu HH, Chen JZ (2009) Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings. Sci Hortic 121:458–461CrossRefGoogle Scholar
  82. Zarabi M, Alahdadi I, Akbari GA, Akbari GA (2011) A study on the effects of different biofertilizer combinations on yield, its components and growth indices of corn (Zea mays L.) under drought stress condition. Afr J Res 6:681–685Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Brazilian Agricultural Research Corporation, Embrapa Tropical AgroindustryFortalezaBrazil

Personalised recommendations