Skip to main content

Assessing Economic Benefits of Arbuscular Mycorrhizal Fungi as a Potential Indicator of Soil Health

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 41))

Abstract

A measure of the presence, function and economic value of arbuscular mycorrhizas is proposed as a potential indicator of soil health. The roles of hyphae in soil include enhancing the efficiency of plant access to nutrients, especially phosphorus, facilitating plant access to water under water-limiting conditions, protection of soil organic matter, and strengthening resilience against disease. As such, mycorrhizas can influence economic benefits through their direct and indirect effects on plants associated with chemical, physical and biological components of soil fertility. Although the presence of mycorrhizas is pivotal to many soil processes, their potential contributions can be overridden by soil management decisions that do not take them into account. Nevertheless, it is difficult to quantify the economic benefits of mycorrhizas in agricultural ecosystems. Risk minimisation strategies can be used to deal with some or all of the factors that impede realistic economic valuation of mycorrhizas. However, without even rudimentary local knowledge of arbuscular mycorrhizal fungi in agricultural ecosystems, there is potential for management practices to fail to consider fully, and consequently fail to capture, benefits from these widespread and potentially beneficial soil organisms especially if their contribution is difficult to quantify.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott LK, Murphy DV (eds) (2003) Soil biological fertility: a key to sustainable land use in agriculture. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Abbott LK, Robson AD, Gazey C (1992) Selection of inoculant VAM fungi. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology: experiments with mycorrhizas. Academic Press, London, pp 1–21

    Google Scholar 

  • Abbott LK, Robson AD (1984) The effect of root density, inoculum placement and infectivity of inoculum on the development of vesicular-arbuscular mycorrhizas. New Phytol 97:285–299

    Article  Google Scholar 

  • Abbott LK, Robson AD (1985) Formation of external hyphae in soil by four species of vesicular-arbuscular mycorrhizal fungi. New Phytol 99:245–255

    Article  Google Scholar 

  • Albrechtova J, Latr A, Nederost L, Pokluda R, Posta K, Vosatka M (2012) Dual inoculation with mycorrhizal and saprophytic fungi applicable in sustainable cultivation improves the yield and nutritive value of onion. Sci World J, Article ID 374091, 8 pp

    Google Scholar 

  • Azćon-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  • Baker R, Ruting B (2014) Environmental policy analysis: a guide to non-market valuation. Staff Working Paper, Productivity Commission, Australian Government. Accessed online 1 April 2014; www.pc.gov.au/research/staff-working/non-market-valuation

  • Bishop J (ed) (2013) The economics of ecosystems and biodiversity in business and enterprise. Routledge, Abingdon, Oxon, p 296

    Google Scholar 

  • Brito I, Goss MJ, De Carvalho M (2012) Effect of tillage and crop on arbuscular mycorrhiza colonisation of winter wheat and triticale under Mediterranean conditions. Soil Use Manage 28:202–208

    Article  Google Scholar 

  • Chaurasia B (2004) Vesicular arbuscular mycorrhiza: a potential biofertiliser. ENVIS Newsl: Himal Ecol 1:1–2

    Google Scholar 

  • Delian E, Chira A, Chira L, Savulescu E (2011) Arbuscular mycorrhizae: an overview. SW J Horticult Biol Environ 2:167–192

    Google Scholar 

  • Dobell AR (1995) Environmental degradation and the religion of the market. In: Coward H (ed) Population, consumption and the environment. State University of New York Press, Albany, pp 229–250

    Google Scholar 

  • Endlweber K, Scheu S (2007) Interactions between mycorrhizal fungi and Collembola: effects on root structure of competing plant species. Biol Fertil Soils 43:741–749

    Article  Google Scholar 

  • Evelyn H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  Google Scholar 

  • Gazey C, Abbott LK, Robson AD (1992) The rate of development of mycorrhizas affects the onset of sporulation and production of external hyphae by two species of Acaulospora. Mycol Res 96:643–650

    Article  Google Scholar 

  • Gazey C, Abbott LK, Robson AD (2004) Indigenous and introduced arbuscular mycorrhizal fungi contribute to plant growth in two agricultural soils from south-western Australia. Mycorrhiza 14:355–362

    Article  CAS  PubMed  Google Scholar 

  • Graham JH, Abbott LK (2000) Wheat responses to aggressive and non-aggressive arbuscular mycorrhizal fungi. Plant Soil 220:207–218

    Article  CAS  Google Scholar 

  • Gutjahr C, Paszkowski U (2013) Multiple control levels of root system remodelling in arbuscular mycorrhizal symbiosis. Front Plant Sci 4: Article 204. doi:10.3389/fpls.2013.00294

  • Hilou A, Zhang H, Franken P, Hause B (2014) Do jasmonates play a role in arbuscular mycorrhiza-induced local bioprotection of Medicago truncatula against root rot disease caused by Aphanomyces euteiches? Mycorrhiza 24:45–54

    Article  CAS  PubMed  Google Scholar 

  • Jastrow JD, Miller RM, Lussenhop J (1998) Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol Biochem 30:905–916

    Article  CAS  Google Scholar 

  • Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647

    Article  CAS  PubMed  Google Scholar 

  • Johnson NC, Graham JH (2013) The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant Soil 363:411–419

    Article  CAS  Google Scholar 

  • Juniper S, Abbott LK (1993) Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 4:45–57

    Article  Google Scholar 

  • Koide RT, Peoples MS (2012) On the nature of temporary yield loss in maize following canola. Plant Soil 360:259–269

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (eds) (2009) Biochar for environmental management, science and technology. Earthscan, London

    Google Scholar 

  • Lewandowski TJ, Dunfield KE, Antunes PM (2013) Isolate identify determines plant tolerance to pathogen attack in assembled mycorrhizal communities. PLoS One 8:e61329. doi:10.1371/journal/pone.0061329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loy DR (1997) The religion of the market. J Am Acad Relig 65(2):275–290

    Article  Google Scholar 

  • Lumley S (2013) Sordid Boon? The context of sustainability in historical and contemporary global economics. Academica Press, Palo Alto

    Google Scholar 

  • Manoharan PT, Shanmugaiah V, Balasubramanian N, Gomathinayagam S, Sharma MP, Muthuchelian K (2010) Influence of AM fungi on the growth and physiological status of Erythrina variegata Linn. grown under different water stress conditions. Eur J Soil Biol 46:151–156

    Article  Google Scholar 

  • Martinez-Alier J (1987) Ecological economics. Energy, environment and society. Basil Blackwell, Oxford

    Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchile GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by arbuscular-mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • McGonigle TP (1988) A numerical analysis of published field trials with vesicular-arbuscular mycorrhizal fungi. Funct Ecol 2:473–478

    Article  Google Scholar 

  • McGonigle TP (2001) On the use of non-linear regression with the logistic equation for changes with time of percentage root length colonized by arbuscular mycorrhizal fungi. Mycorrhiza 10:249–254

    Article  Google Scholar 

  • Mickan B, Abbott LK, Stephanova K, Solaiman ZM (submitted) Demonstrated mechanisms for interactions between biochar and mycorrhizal fungi in water-deficient agricultural soil

    Google Scholar 

  • Miller M, McGonigle T, Addy H (1994) An economic approach to evaluate the role of mycorrhizas in managed ecosystems. Plant and Soil 159:27–35

    Google Scholar 

  • Pearce D (1995) Blueprint 4. Capturing global environmental value. Earthscan, London

    Google Scholar 

  • Pearce D (2002) An intellectual history of environmental economics. Annu Rev Energy Environ 27:57–81

    Article  Google Scholar 

  • Pearson JN, Abbott LK, Jasper DJ (1993) Mediation of competition between two colonizing VA mycorrhizal fungi by the host plant. New Phytol 123:93–98

    Article  Google Scholar 

  • Pearson JN, Abbott LK, Jasper AD (1994) Phosphorus, soluble carbohydrates and the competition between two arbuscular mycorrhizal fungi colonizing subterranean clover. New Phytol 127:101–106

    Article  CAS  Google Scholar 

  • Pearson JM, Schweiger P (1993) Scutellospora calospora (Nicol and Gerd) associated with subterranean clover – dynamics of colonization, sporulation and soluble carbohydrates. New Phytol 127:697–701

    Article  Google Scholar 

  • Pearson JM, Schweiger P (1994) Scuttelosposa calospora (Nicol and Gerd) Walker and Sanders associated with subterranean clover produces non-infective hyphae during sporulation. New Phytol 124:215–219

    Article  Google Scholar 

  • Pimental D, Wilson C, McCallum C, Huang R, Dwen P, Flack J, Tran Q, Saltman T, Cliff B (1997) Economic and environmental benefits of biodiversity. Bioscience 47:747–757

    Article  Google Scholar 

  • Rillig MC, Mummey DL (2006) Tansley review – mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  PubMed  Google Scholar 

  • Ryan MH, Angus JK (2003) Arbuscular mycorrhizae in wheat and field pea crops on a low P soil: increased Zn uptake but no increase in P-uptake or yield. Plant Soil 250:225–239

    Article  CAS  Google Scholar 

  • Ryan MH, Kirkegaard JA (2012) The agronomic relevance of arbuscular mycorrhizas in the fertility of Australian extensive cropping systems. Agricult Ecocsyst Environ 163:37–53

    Article  Google Scholar 

  • Sano SM, Abbott LK, Solaiman Z, Robson AD (2002) Influence of liming, inoculum level and inoculum placement on root colonization of subterranean clover. Mycorrhiza 12:285–290

    Article  CAS  PubMed  Google Scholar 

  • Schnepf A, Roose T, Schweiger P (2008) Growth model for arbuscular mycorrhizal fungi. J R Soc Interface 5:773–784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schulz C (2001) Effect of (vesicular-) arbuscular mycorrhiza on survival and post-vitro development of micropropagated oil palms (Elaeis guineensis Jacq.). Doctoral Thesis, University of Göttingen

    Google Scholar 

  • Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515

    Article  PubMed  Google Scholar 

  • Schweiger PF, Robson AD, Barrow NJ, Abbott LK (2007) Arbuscular mycorrhizal fungi from three general induce two-phase plant growth responses on a high P-fixing soil. Plant Soil 292:181–192

    Article  CAS  Google Scholar 

  • Shi P, Abbott LK, Banning NC, Zhao B (2012) Comparison of morphological and molecular genetic quantification of relative abundance of arbuscular mycorrhizal fungi within roots. Mycorrhiza 22:501–513

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Sunit KS, Alok K (2013) Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions. Mycorrhiza 23:35–44

    Article  PubMed  Google Scholar 

  • Smith SE, DJ Read (1996) Mycorrhizal symbiosis, 2nd edn. Academic, London

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London, p 800

    Google Scholar 

  • Smith FA, Smith SE (2011) What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants? Plant Soil 348:63–79

    Article  CAS  Google Scholar 

  • Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13

    Article  PubMed  Google Scholar 

  • Smith FA, Jakobsen I, Smith SE (2000) Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytologist 147:357–366

    Article  Google Scholar 

  • Steinaker DF, Wilson SD (2008) Scale and density dependent relationships among roots, mycorrhizal fungi and collembola in grassland and forest. Oikos 117:703–710

    Article  Google Scholar 

  • Thonar C, Frossard E, Smilauer P, Jansa J (2014) Competition and facilitation in synthetic communities of arbuscular mycorrhizal fungi. Mol Ecol 23:733–746

    Article  PubMed  Google Scholar 

  • Thonar C, Schnepf A, Frossard E, Roose T, Jansa J (2011) Traits related to differences in function among three arbuscular mycorrhizal fungi. Plant Soil 339:231–245

    Article  CAS  Google Scholar 

  • UNEP (2014) ‘Valuing nature’, green economy briefing paper. United Nations Environment Program. www.unep.org/greeneconomy/ResearchProducts/GEBriefingPapers/. Accessed on 3 April 2014

  • Veresoglou SD, Malley JM (2012) A model that explains diversity patterns of arbuscular mycorrhizas. Ecol Model 231:146–152

    Article  Google Scholar 

  • Watts-Williams S, Cavagnaro TR (2012) Arbuscular mycorrhizas modify tomato responses to soil zinc and phosphorus addition. Biol Fertil Soils 48:285–294

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. K. Abbott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abbott, L.K., Lumley, S. (2014). Assessing Economic Benefits of Arbuscular Mycorrhizal Fungi as a Potential Indicator of Soil Health. In: Solaiman, Z., Abbott, L., Varma, A. (eds) Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration. Soil Biology, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45370-4_2

Download citation

Publish with us

Policies and ethics