Skip to main content

Arbuscular Mycorrhizal Colonization and Agricultural Land Use History

  • Chapter
  • First Online:
Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration

Part of the book series: Soil Biology ((SOILBIOL,volume 41))

  • 2468 Accesses

Abstract

The impact of farming practices such as tillage, crop rotation, use of chemical pesticides and fertilizers, clean fallowing, and topsoil removal on AM fungi has been studied extensively and can alter the abundance of AM fungi in soil. The development of a conceptual model for development of arbuscular mycorrhizas could be useful for predicting the status of AM fungi in agricultural fields, but this is not quantitative. This could be further developed using spatial variability studies of the infectivity of AM fungi, but this depends on basic understanding of the factors that influence the factors that influence the abundance of AM fungi in soil and their ability to colonize roots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LK, Robson AD (1977) Distribution and abundance of vesicular-arbuscular endophytes in some Western Australian soils. Aust J Bot 25:515–522

    Article  Google Scholar 

  • Abbott LK, Robson AD (1982) Infectivity of vesicular arbuscular mycorrhizal fungi in agricultural soils. Aust J Agric Res 33:1049–1059

    Article  Google Scholar 

  • Abbott LK, Robson AD (1984) The effect of mycorrhiza on plant growth. In: Powell CD, Bagyaraj DJ (eds) VA mycorrhiza. CRC, Boca Raton, pp 113–130

    Google Scholar 

  • Abbott LK, Robson AD (1991) Field management of VA mycorrhizal fungi. In: Kelster DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer, Norwell, pp 355–362

    Chapter  Google Scholar 

  • Abbott LK, Robson AD (1994) The impact of agricultural practices on mycorrhizal fungi. In: Pakhurst CE, Doube BM, Gupta VVSR, Grace PR (eds) Soil biota management in sustainable farming systems. CSIRO, East Melbourne, pp 88–95

    Google Scholar 

  • Abbott LK, Robson AD, Scheltema MA (1995) Managing soils to enhance mycorrhizal benefits in Mediterranean agriculture. Crit Rev Biotechnol 15(3/4):213–228

    Article  Google Scholar 

  • Abd-Alla MH, Omar SA, Karanxha S (2000) The impact of pesticides on arbuscular mycorrhizal and nitrogen-fixing symbioses in legumes. Appl Soil Ecol 14:191–200

    Article  Google Scholar 

  • Baon JB, Smith SE, Altson AM (1994) Phosphorus uptake and growth of barley as affected by soil temperature and mycorrhizal infection. J Plant Nutr 17:479–492

    Article  Google Scholar 

  • Barber NA, Kiers ET, Theis N, Hazzard RV, Adler LS (2013) Linking agricultural practices, mycorrhizal fungi, and traits mediating plant-insect interactions. Ecol Appl 23:1519–1530

    Article  PubMed  Google Scholar 

  • Baylis GTS (1970) Root hairs and phycomycetous mycorrhizas in phosphorus-deficient soil. Plant Soil 33:713–716

    Article  Google Scholar 

  • Black RLB, Tinker PB (1979) The development of endomycorrhizal root systems. II. Effects of agronomic factors and soil conditions on the development of vesicular-arbuscular mycorrhizal infection in barley and on the endophyte spore density. New Phytol 83:401–413

    Article  Google Scholar 

  • Boerner REJ, DeMars BG, Leight PN (1996) Spatial patterns of mycorrhizal infectiveness of soils along a successional chronosequence. Mycorrhiza 6:79–90

    Article  Google Scholar 

  • Bolan NS, Robson AD, Barrow NJ (1984) Increasing phosphorus supply can increase the infection of plant-roots by vesicular arbuscular mycorrhizal fungi. Soil Biol Biochem 16:419–420

    Article  CAS  Google Scholar 

  • Brito I, Goss MJ, de Carvalho M (2012) Effect of tillage and crop on arbuscular mycorrhiza colonization of winter wheat and triticale under Mediterranean conditions. Soil Use Manag 28:202–208

    Article  Google Scholar 

  • Brundrett M (1991) Mycorrhizas in natural ecosystems. Adv Ecol Res 21:171–313

    Article  Google Scholar 

  • Carvalho LM, Correia PM, Ryel RJ, Martin-Loucao MA (2003) Spatial variability of arbuscular mycorrhizal fungal spores in two natural plant communities. Plant Soil 251:227–236

    Article  CAS  Google Scholar 

  • Clarke C, Mosse B (1981) Plant growth responses to vesicular-arbuscular mycorrhiza. XII. Field inoculation response of barley at two soil P levels. New Phytol 87:695–705

    Article  CAS  Google Scholar 

  • Crush JR (1978) Changes in effectiveness of soil endomycorrhizal fungal populations during pasture development. N Z J Agric Res 21:683–685

    Article  Google Scholar 

  • Davinic M, Moore-Kucera J, Acosta-Martinez V, Zak J, Allen V (2013) Soil fungal distribution and functionality as affected by grazing and vegetation components of integrated crop-livestock agroecosystems. Appl Soil Ecol 66:61–70

    Article  Google Scholar 

  • De Miranda JCC, Harris PJ, Wild A (1989) Effects of soil and plant phosphorus concentrations on vesicular-arbuscular mycorrhiza in sorghum plants. New Phytol 112:405–410

    Article  Google Scholar 

  • Domisch T, Finer L, Lehto T, Smolander A (2002) Effect of soil temperature on nutrient allocation and mycorrhizas in Scots pine seedlings. Plant Soil 239:173–185

    Article  CAS  Google Scholar 

  • Douds DDJ, Johnson NC (2003) Contributions of arbuscular mycorrhizas to soil biological fertility. In: Abbott LK, Murphy DV (eds) Soil biological fertility-a key to sustainable land use in agriculture. Kluwer Academic, The Netherlands, pp 129–162

    Google Scholar 

  • Douds DD, Janke RR, Peters SE (1993) VAM fungus spore populations and colonization of roots of maize and soybean under conventional and low-input sustainable agriculture. Agric Ecosyst Environ 43:325–335

    Article  Google Scholar 

  • Douds DD, Galvez L, Janke R, Wagoner P (1995) Effect of tillage and farming systems upon populations and distribution of vesicular-arbuscular mycorrhiza fungi. Agric Ecosyst Environ 52:111–118

    Article  Google Scholar 

  • Duchicela J, Sullivan TS, Bontti E, Bever JD (2013) Soil aggregate stability increase is strongly related to fungal community succession along an abandoned agricultural field chronosequence in the Bolivian Altiplano. J Appl Ecol 50:1266–1273

    CAS  Google Scholar 

  • Eom AH, Wilson GWT, Harnett DC (2001) Effects of ungulate grazers on arbuscular mycorrhizal symbiosis and fungal community structure in tall grass prairie. Mycologia 93:233–242

    Article  Google Scholar 

  • Eschen R, Muller-Scharer H, Schaffner U (2013) Plant interspecific differences in arbuscular mycorrhizal colonization as a result of soil carbon addition. Mycorrhiza 23:61–70

    Article  CAS  PubMed  Google Scholar 

  • Evans DG, Miller MH (1990) The role of the external mycelial network in the effect of soil disturbance upon vesicular-arbuscular mycorrhizal colonization of maize. New Phytol 114:65–72

    Article  Google Scholar 

  • Franke-Snyder M, Douds DD, Galvez L, Philips JG, Wagoner P, Drinkwater L, Morton JB (2001) Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA. Appl Soil Ecol 16:35–48

    Article  Google Scholar 

  • Galvez L, Douds DD, Wagoner P, Longnecker LR, Drinkwater LE, Janke RR (1995) An over-wintering cover crop increases inoculum of VAM fungi in agricultural soil. Am J Altern Agric 10:152–156

    Article  Google Scholar 

  • Galvez L, Douds DD, Drinkwater LE, Wagoner P (2001) Effect of tillage and farming system upon VAM fungus populations and mycorrhizas and nutrient uptake of maize. Plant Soil 228:299–308

    Article  CAS  Google Scholar 

  • Gavito ME, Miller MH (1998) Changes in mycorrhiza development in maize induced by crop management practices. Plant Soil 198:185–192

    Article  CAS  Google Scholar 

  • Gryndler M, Lestina J, Moravec V, Prikryl Z, Lipavsky J (1990) Colonization of maize roots by VAM fungi under conditions of long-term fertilization of varying intensity. Agric Ecosyst Environ 29:183–186

    Article  Google Scholar 

  • Harinikumar KM, Bagyaraj DJ (1988) Effect of crop rotation on native vesicular-arbuscular mycorrhizal propagules in soil. Plant Soil 110:77–80

    Article  Google Scholar 

  • Harley JL, Harley EL (1987) A checklist of mycorrhiza in the British Flora—Addenda, Errata and Index. New Phytol 107:741–749

    Article  Google Scholar 

  • Harrier LA, Watson CA (1997) The role of Arbuscular mycorrhizal fungi in sustainable cropping systems. In: Sparks DL (ed) Advances in agronomy. Academic, New York, pp 185–225

    Google Scholar 

  • Hayman DS (1975) The occurrence of mycorrhiza in crops as affected by soil fertility. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic, London, pp 495–510

    Google Scholar 

  • Helgason T, Daniel TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web. Nature 394:431

    Article  CAS  PubMed  Google Scholar 

  • Helgason T, Feng HY, Sherlock DJ, Young JPW, Fitter AH (2014) Arbuscular mycorrhizal communities associated with maples (Acer spp.) in a common garden are influenced by season and host plant. Botanique 92(4). doi:10.1139/cjb-2013-0263

    Google Scholar 

  • Hetrick BAD (1991) Mycorrhizas and root architecture. Experientia 47:355–362

    Article  Google Scholar 

  • Hiiesalu I, Paertel M, Davison J, Gerhold P, Metsis M, Moora M, Oepik M, Vasar M, Zobel M, Wilson SD (2014) Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. New Phytol 203:233–244

    Article  CAS  PubMed  Google Scholar 

  • Hodge A, Storer K (2014) Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil. doi:10.1007/s11104-014-2162-1

    Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  CAS  PubMed  Google Scholar 

  • Jacobson KM (1997) Moisture and substrate stability determine VA-mycorrhizal fungal community distribution and structure in an arid grassland. J Arid Environ 35:59–75

    Article  Google Scholar 

  • Jalali BL, Sharma OP (1993) Biocides and non-target microorganisms: an environmental assessment. Indian J Microbiol 33:83–92

    Google Scholar 

  • Jansa J, Erb A, Obereholzer HR, Smilauer P, Egli S (2014) Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Mol Ecol 23:2118–2135

    Article  CAS  PubMed  Google Scholar 

  • Jasper DA, Robson AD, Abbott LK (1989) Soil disturbance reduces the infectivity of external hyphae of vesicular arbuscular mycorrhizal fungi. New Phytol 112:93–99

    Article  Google Scholar 

  • Johnson NC, Rowland DL, Corkidi L, Egerton-Warburton LM, Allen EB (2003) Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84:1895–1908

    Article  Google Scholar 

  • Johnson NC, Wilson GWT, Bowker MA, Wilson JA, Miller RM (2010) Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc Natl Acad Sci U S A 107:2093–2098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Juniper S, Abbott LK (1993) The effect of salinity on spore germination and hyphal extension of some VA mycorrhizal fungi. In: Abstracts of the third European symposium on mycorrhizas, 19–23 August 1991, Sheffield

    Google Scholar 

  • Kabir Z, O’Halloran IP, Hamel C (1997) Seasonal changes of arbuscular mycorrhizal fungi as affected by tillage practices and fertilization: hyphal density and mycorrhiza root colonization. Plant Soil 192:285–293

    Article  CAS  Google Scholar 

  • Kahiluoto H, Ketoja E, Vestberg M, Saarela I (2001) Promotion of AM utilization through reduced P fertilization 2. Field studies. Plant Soil 231:65–79

    Article  CAS  Google Scholar 

  • Kahiluoto H, Ketoja E, Vestberg M (2012) Plant-available P supply is not the main factor determining the benefit from arbuscular mycorrhiza to crop P nutrition and growth in contrasting cropping systems. Plant Soil 350:85–98

    Article  CAS  Google Scholar 

  • Karlen DL, Wollenhaupt NC, Erbach DC, Berry EC, Swan JB, Eash NS, Jordahl JL (1994) Long-term tillage effects on soil quality. Soil Tillage Res 32:313–327

    Article  Google Scholar 

  • Kurle JE, Pfleger FL (1994) Arbuscular mycorrhizal fungus spore populations respond to conversions between low-input and conventional management practices in a corn-soybean rotation. Agron J 86:467–475

    Article  Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Smith DL (2000) Mycorrhizae formation and nutrient uptake of new corn (Zea mays L.) hybrids with extreme canopy and leaf architecture as influenced by soil N and P levels. Plant Soil 221:157–166

    Article  CAS  Google Scholar 

  • Mäder P, Edenhofer S, Boller T, Wiemken A, Niggli U (2000) Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high input (conventional) farming systems in a crop rotation. Biol Fertil Soils 31:150–156

    Article  Google Scholar 

  • McGonigle TP, Miller MH (2000) The inconsistent effect of soil disturbance on colonization of roots by arbuscular mycorrhizal fungi: a test of the inoculum density hypothesis. Appl Soil Ecol 14:147–153

    Article  Google Scholar 

  • McMillen BG, Juniper S, Abbott LK (1998) Inhibition of hyphal growth of a vesicular-arbuscular mycorrhizal containing sodium chloride of infection from fungus in soil limits the spread spores. Soil Biol Biochem 30:1639–1646

    Article  CAS  Google Scholar 

  • Menge JA (1982) Effect of soil fumigants and fungicides on vesicular arbuscular mycorrhizal fungi. Phytopathology 72:1125–1132

    Google Scholar 

  • Mulligan MF, Smucker AJM, Safir GF (1985) Tillage modifications of dry edible bean root colonization by VAM fungi. Agron J 77:140–144

    Article  Google Scholar 

  • Newman EI, Reddell P (1987) The distribution of mycorrhizas among families of vascular plants. New Phytol 106:745–751

    Article  Google Scholar 

  • Ortas I (1996) The influence of use of different rates of mycorrhizal inoculum on root infection, plant growth, and phosphorus uptake. Commun Soil Sci Plant Anal 27:2935–2946

    Article  CAS  Google Scholar 

  • Ortas I, Rowell DL (2004) Effect of ammonium and nitrate on indigenous mycorrhizal infection, rhizosphere pH change and phosphorus uptake by sorghum. Commun Soil Sci Plant Anal 35:1923–1944

    Article  CAS  Google Scholar 

  • Ortas I, Akpinar C, Lal R (2013) Long-term impacts of organic and inorganic fertilizers on carbon sequestration in aggregates of an Entisol in Mediterranean Turkey. Soil Sci 178:12–23

    Article  CAS  Google Scholar 

  • Porter WM, Robson AD, Abbott LK (1987) Field survey of the distribution of vesicular-arbuscular mycorrhizal fungi in relation to soil pH. J Appl Ecol 24:659–662

    Article  Google Scholar 

  • Rosendahl CN, Rosendahl S (1991) Influence of vesicular-arbuscular mycorrhizal fungi (Glomus spp.) on the response of cucumber (Cucumis sativus L.) to salt stress. Environ Exp Bot 31:313–318

    Article  Google Scholar 

  • Ruiz-Lozano JM, Azcon R, Gomez M (1996) Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiol Plant 98:767–772

    Article  CAS  Google Scholar 

  • Ruotsalainen AL, Kytöviita MM (2004) Mycorrhiza does not alter low temperature impact on Gnaphalium norvegicum. Oecologia 140:226–233

    Article  PubMed  Google Scholar 

  • Ryan MH (1999) Is an enhanced soil biological community, relative to conventional neighbors, a consistent feature of alternative (organic and biodynamic) agricultural systems? Biol Agric Hortic 17:131–144

    Article  Google Scholar 

  • Ryan MH, Ash JE (1999) Effects of phosphorus and nitrogen on growth of pasture plants and VAM fungi in SE Australian soils with contrasting fertilizer histories (conventional and biodynamic). Agric Ecosyst Environ 73:51–62

    Article  Google Scholar 

  • Saravesi K, Ruotsalainen AL, Cahill JF (2013) Contrasting impacts of defoliation on root colonization by arbuscular mycorrhizal and dark septate endophytic fungi of Medicago sativa. Mycorrhiza 24:239–245

    Article  PubMed  Google Scholar 

  • Sharma RC, Sarker S, Das D, Banik P (2013) Impact assessment of arbuscular mycorrhiza Azospirillum and chemical fertilizer application on soil health and ecology. Commun Soil Sci Plant Anal 44:1116–1126

    Article  CAS  Google Scholar 

  • Sieverding E (1991) Vesicular-Arbuscular mycorrhizae management in tropical agrosystems. Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ) GmbH, Eschboran, p 371

    Google Scholar 

  • Sikes BA, Maherali H, Klironomos JN (2014) Mycorrhizal fungal growth responds to soil characteristics, but not host plant identity, during a primary lacustrine dune succession. Mycorrhiza 24:219–226

    Article  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, London, p 800

    Google Scholar 

  • Solaiman ZM, Abbott LK (2008) Influence of arbuscular mycorrhizal fungi, inoculum level and phosphorus placement on growth and phosphorus uptake of Phyllanthus calycinus in jarrah forest soil. Biol Fertil Soils 44:815–821

    Article  Google Scholar 

  • Thompson JP (1987) Decline of vesicular-arbuscular mycorrhizas in long fallow disorder of field crops and its expression in phosphorus deficiency in sunflower. Aust J Agric Res 38:847–867

    Article  CAS  Google Scholar 

  • Thompson JP (1991) Improving the mycorrhizal condition of the soil through cultural practices and effect on growth and phosphorus uptake by plants. In: Johansen C, Lee KK, Sahrawat KL (eds) Phosphorus nutrition of grain legumes in the semi-arid tropics. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, pp 117–137

    Google Scholar 

  • Thompson JP (1994) What is the potential for management of mycorrhizas in agriculture? In: Robson AD, Abbott LK, Malajcuk N (eds) Management of mycorrhiza in agriculture, horticulture and forestry. Kluwer Academic, The Netherlands, pp 191–200

    Google Scholar 

  • Thompson JP, Wildermuth GB (1989) Colonization of crop and pasture species with vesicular arbuscular mycorrhizal fungi and a negative correlation with root infection by Bipolaris-Sorokiniana. Can J Bot 67:687–693

    Article  Google Scholar 

  • Torres YA, Busso C, Montenegro O, Ithurrart L, Giorgetti H, Rodríguez G, Bentivegna D, Brevedan R, Fernández O, de la Merced MM (2011) Defoliation effects on the arbuscular mycorrhizas of ten perennial grass genotypes in arid Patagonia, Argentina. Appl Soil Ecol 49:208–214

    Article  Google Scholar 

  • Wang GM, Stribley DP, Tinker PB, Walker C (1993) Effects of pH on arbuscular mycorrhiza. 1. Field observations on the long-term liming experiments at Rothamsted and Woburn. New Phytol 124:465–472

    Article  CAS  Google Scholar 

  • Watts-Williams SJ, Turney TW, Patti AF, Cavagnaro TR (2014) Uptake of zinc and phosphorus by plants is affected by zinc fertiliser material and arbuscular mycorrhizas. Plant Soil 376:165–175

    Article  CAS  Google Scholar 

  • Yan L, Zhou G, Zhang F (2013) Effects of different grazing intensities on grassland production in China: a meta-analysis. PLoS One 8:e81466. doi:10.1371/journal.pone.0081466

    Article  PubMed Central  PubMed  Google Scholar 

  • Yocum DH, Larsons HJ, Boosalis MG (1985) The effects of tillage treatments and a fallow season on VA mycorrhiza of winter wheat. In: Molina R (ed) Proceedings of the sixth North American conference on mycorrhizae. Forest Research Laboratory, Corvallis, p 297

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irnanda A. F. Djuuna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Djuuna, I.A.F. (2014). Arbuscular Mycorrhizal Colonization and Agricultural Land Use History. In: Solaiman, Z., Abbott, L., Varma, A. (eds) Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration. Soil Biology, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45370-4_17

Download citation

Publish with us

Policies and ethics