Skip to main content

Arsenic Uptake and Phytoremediation Potential by Arbuscular Mycorrhizal Fungi

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 41))

Abstract

Chronic arsenic exposure through drinking water or food has become a global risk to human health. Some annual and perennial plants can tolerate and accumulate >0.1 % arsenic (As) by weight in shoots or roots, constituting the basis of exploring plant-based remediation in As-contaminated environments. Mycorrhizal fungi enhance plant nutrition and growth, increase exudation of organic chelators, and confer enhanced As tolerance on plants. Compared to non-mycorrhizal counterparts, mycorrhizal plants have greater As accumulation capacity and thus offer “protective effects” against As toxicity or potential to As phytoremediation. However, at present, the application of mycorrhizal fungi in As phytoremediation has been poorly explored. We discuss the potential of mycorrhizal fungi to contribute to a more cost-effective, environmentally sound, and sustainable pathway in global As phytoremediation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abedin MJ, Feldmann J, Meharg AA (2002a) Uptake kinetics of arsenic species in rice plants. Plant Physiol 12:1120–1128

    Article  Google Scholar 

  • Abedin MJ, Cresser M, Meharg AA, Feldmann J, Cotter-Howells J (2002b) Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environ Sci Technol 3:962–968

    Article  Google Scholar 

  • Adriano DC (2001) Trace elements in the terrestrial environment: biogeochemistry, bioavailability, and risks of metals, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Ahmed FRS, Killham K, Alexander I (2006) Influences of arbuscular mycorrhizal fungus Glomus mosseae on growth and nutrition of lentil irrigated with arsenic contaminated water. Plant Soil 28:33–41

    Article  Google Scholar 

  • Al Agely A, Sylvia DM, Ma LQ (2005) Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.). J Environ Qual 3:2181–2186

    Article  Google Scholar 

  • Ali W, Isayenkov SV, Zhao FJ, Maathuis JM (2009) Arsenite transport in plants. Cell Mol Life Sci 6:2329–2339

    Article  Google Scholar 

  • Arriagada C, Aranda E, Sampedro I, Garcia-Romera I, Ocampo JA (2009) Contribution of the saprobic fungi Trametes versicolor and Trichoderma harzianum and the arbuscular mycorrhizal fungi Glomus deserticola and G. claroideum to arsenic tolerance of Eucalyptus globulus. Bioresour Technol 24:6250–6257

    Article  Google Scholar 

  • Bai JF, Lin XG, Yin R, Zhang HY, Wang JH, Chen XM, Luo YM (2008) The influence of arbuscular mycorrhizal fungi on As and P uptake by maize (Zea mays L.) from As-contaminated soils. Appl Soil Ecol 3:137–145

    Article  Google Scholar 

  • Baldwin PR, Butcher DJ (2007) Phytoremediation of arsenic by two hyperaccumulators in a hydroponic environment. Microchem J 8:297–300

    Article  Google Scholar 

  • Bech J, Poschenrieder C, Llugany M, Barcelo J, Tume P, Toloias FJ (1997) As and heavy metal contamination of soil and vegetation around a copper mine in Northern Peru. Sci Total Environ 20:83–91

    Article  Google Scholar 

  • Bhattacharjee Y (2007) A sluggish response to humanity’s biggest mass poisoning. Science 31:1659–1661

    Article  Google Scholar 

  • Bona E, Cattaneo C, Cesaro P, Marsano F, Lingua G, Cavaletto M, Berta G (2010) Proteomic analysis of Pteris vittata fronds: two arbuscular mycorrhizal fungi differentially modulate protein expression under arsenic contamination. Proteomics 10:3811–3834

    Article  CAS  PubMed  Google Scholar 

  • Bona E, Marsano F, Massa N, Cattaneo C, Cesaro P, Argese E, di Toppi L, Cavaletto M, Berta G (2011) Proteomic analysis as a tool for investigating arsenic stress in Pteris vittata roots colonized or not by arbuscular mycorrhizal symbiosis. J Proteomics 74:1338–1350

    Article  CAS  PubMed  Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffre T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57

    Article  CAS  Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants, understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 32:37–77

    Article  Google Scholar 

  • Chen BD, Zhu YG, Smith FA (2006) Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining–impacted soil. Chemosphere 6:1464–1473

    Article  Google Scholar 

  • Chen BD, Xiao XY, Zhu YG, Smith FA, Xie ZM, Smith SE (2007) The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Sci Total Environ 37:226–234

    Article  Google Scholar 

  • Chen XW, Li H, Chan WF, Wu C, Wu FY, Wu SC, Wong MH (2012) Arsenite transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenite stress. Chemosphere 89:1248–1254

    Article  CAS  PubMed  Google Scholar 

  • Christophersen HM, Smith FA, Smith SE (2009a) No evidence for competition between arsenate and phosphate for uptake from soil by medic or barley. Environ Int 3:485–490

    Article  Google Scholar 

  • Christophersen HM, Smith FA, Smith SE (2009b) Arbuscular mycorrhizal colonization reduces arsenate uptake in barley via downregulation of transporters in the direct epidermal phosphate uptake pathway. New Phytol 184:962–974

    Article  CAS  PubMed  Google Scholar 

  • Christophersen HM, Smith FA, Smith SE (2012) Unraveling the influence of arbuscular mycorrhizal colonization on arsenic tolerance in medicago: Glomus mosseae is more effective than G. intraradices, associated with lower expression of root epidermal Pi transporter genes. Front Physiol 3:91

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cozzolino V, Pigna M, Di Meo V, Caporale AG, Violante A (2010) Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth of Lactuca sativa L. and arsenic and phosphorus availability in an arsenic polluted soil under non-sterile conditions. Appl Soil Ecol 45:262–268

    Article  Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 8:713–764

    Article  Google Scholar 

  • De Koe T (1994) Agrostis castellana and Agrostis delicatula on heavy metal and arsenic enriched sites in NE Portugal. Sci Total Environ 14:103–109

    Article  Google Scholar 

  • Dong Y, Zhu YG, Smith FA, Wang YS, Chen BD (2008) Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Environ Pollut 15:174–181

    Article  Google Scholar 

  • Douds DD, Nagahashi G, Pfeffer PE, Kayser WM, Reider C (2005) On-farm production and utilization of arbuscular mycorrhizal fungus inoculum. Can J Plant Sci 8:15–21

    Article  Google Scholar 

  • Garg N, Singla P (2011) Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9:303–321

    Article  CAS  Google Scholar 

  • Garg N, Singla P (2012) The role of Glomus mosseae on key physiological and biochemical parameters of pea plants grown in arsenic contaminated soil. Sci Hortic 143:92–101

    Article  CAS  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 8:528–534

    Google Scholar 

  • Gonzalez-Chavez C, Harris PJ, Dodd J, Meharg AA (2002) Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus. New Phytol 15:163–171

    Article  Google Scholar 

  • Gonzalez-Chavez MDA, Ortega-Larrocea MD, Carrillo-Gonzalez R, Lopez-Meyer M, Xoconostle-Cazares B, Gomez SK, Harrison Maria J, Figueroa-Lopez AM, Maldonado-Mendoza IE (2011) Arsenate induces the expression of fungal genes involved in As transport in arbuscular mycorrhiza. Fungal Biol 115:1197–1209

    Article  CAS  Google Scholar 

  • He XH, Nara K (2007) Element biofortification, can mycorrhizas potentially offer a more effective and sustainable way to curb human malnutrition? Trends Plant Sci 1:331–333

    Article  Google Scholar 

  • He XH, Critchley C, Ng H, Bledsoe CS (2005) Nodulated N2-fixing Casuarina cunninghamiana is the sink for net N transfer from non-N2-fixing Eucalyptus maculata via an ectomycorrhizal fungus Pisolithus sp. supplied as ammonium nitrate. New Phytol 16:897–912

    Article  Google Scholar 

  • He XH, Xu MG, Qiu GY, Zhou JB (2009) Use of 15N stable isotope to quantify nitrogen transfer between mycorrhizal plants. J Plant Ecol 2:107–118

    Article  Google Scholar 

  • Hua JF, Lin XG, Yin R, Jiang Q, Shao YF (2009) Effects of arbuscular mycorrhizal fungi inoculation on arsenic accumulation by tobacco (Nicotiana tabacum L.). J Environ Sci (China) 21:1214–1220

    Article  CAS  Google Scholar 

  • Hua JF, Lin XG, Bai JF, Shao YF, Yin R, Jiang Q (2010) Effects of arbuscular mycorrhizal fungi and earthworm on nematode communities and arsenic uptake by maize in arsenic-contaminated soils. Pedosphere 20:163–173

    Article  CAS  Google Scholar 

  • Ijdo M, Cranenbrouck S, Declerck S (2011) Methods for large-scale production of AM fungi: past, present, and future. Mycorrhiza 21:1–16

    Article  CAS  PubMed  Google Scholar 

  • Jankong P, Visoottiviseth P (2008) Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil. Chemosphere 7:1092–1097

    Article  Google Scholar 

  • Kertulis-Tartar GM, Ma LQ, Tu C, Chirenje T (2006) Phytoremediation of an arsenic–contaminated site using Pteris vittata L.: a two–year study. Int J Phytoremediation 8:311–322

    Article  CAS  PubMed  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 1:355–364

    Article  Google Scholar 

  • Kim KW, Bang S, Zhu YG, Meharg AA, Bhattacharya P (2009) Arsenic geochemistry, transport mechanism in the soil–plant system, human and animal health issues. Environ Int 3:453–454

    Article  Google Scholar 

  • Leung HM, Ye ZH, Wong MH (2006) Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils. Environ Pollut 13:1–8

    Article  Google Scholar 

  • Leung HM, Wu FY, Cheung KC, Ye ZH, Wong MH (2010a) The effect of arbuscular mycorrhizal fungi and phosphate amendment on arsenic uptake, accumulation and growth of Pteris vittata in As-contaminated soil. Int J Phytoremediation 12:384–403

    Article  CAS  PubMed  Google Scholar 

  • Leung HM, Wu FY, Cheung KC, Ye ZH, Wong MH (2010b) Synergistic effects of arbuscular mycorrhizal fungi and phosphate rock on heavy metal uptake and accumulation by an arsenic hyperaccumulator. J Hazard Mater 181:497–507

    Article  CAS  PubMed  Google Scholar 

  • Leung HM, Leung AOW, Ye ZH, Cheung KC, Yung KKL (2013) Mixed arbuscular mycorrhizal (AM) fungal application to improve growth and arsenic accumulation of Pteris vittata (As hyperaccumulator) grown in As-contaminated soil. Chemosphere 92:1367–1374

    Article  CAS  PubMed  Google Scholar 

  • Li H, Ye ZH, Chan WF, Chen XW, Wu FY, Wu SC, Wong MH (2011) Can arbuscular mycorrhizal fungi improve grain yield, As uptake and tolerance of rice grown under aerobic conditions? Environ Pollut 159:2537–2545

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhu YG, Chen BD, Christie P, Li XL (2005a) Yield and arsenate uptake of arbuscular mycorrhizal tomato colonized by Glomus mosseae BEG167 in As spiked soil under glasshouse conditions. Environ Int 3:867–873

    Article  Google Scholar 

  • Liu Y, Zhu YG, Chen BD, Christie P, Li XL (2005b) Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L. Mycorrhiza 15:187–192

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Christie P, Zhang JL, Li XL (2009) Growth and arsenic uptake by Chinese brake fern inoculated with an arbuscular mycorrhizal fungus. Environ Exp Bot 66:435–441

    Article  CAS  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 5:201–235

    Article  Google Scholar 

  • Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 5:595–624

    Article  Google Scholar 

  • Meding SM, Zasoski RJ (2008) Hyphal-mediated transfer of nitrate, arsenic, cesium, rubidium, and strontium between arbuscular mycorrhizal forbs and grasses from a California oak woodland. Soil Biol Biochem 4:126–134

    Article  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 15:29–43

    Article  Google Scholar 

  • Meharg AA, Jardine L (2003) Arsenite transport into paddy rice (Oryza sativa) roots. New Phytol 15:39–44

    Article  Google Scholar 

  • Meharg AA, Macnair MR (1990) An altered phosphate uptake system in arsenate–tolerant Holcus lanatus. New Phytol 11:29–35

    Article  Google Scholar 

  • Mendez OM, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 11:278–283

    Google Scholar 

  • Mondal P, Majumder CB, Mohanty B (2006) Laboratory-based approaches for arsenic remediation from contaminated water: recent developments. J Hazard Mater 13:464–479

    Article  Google Scholar 

  • Nasim G (2005) The role of symbiotic soil fungi in controlling roadside erosion and the establishment of plant communities. Caderno de Pesquisa serie Biologia 17:119–136

    Google Scholar 

  • Natarajan S, Stamps RH, Saha UK, Ma LQ (2008) Phytofiltration of arsenic–contaminated groundwater using Pteris vittata L.: effect of plant density and nitrogen and phosphorus levels. Int J Phytoremediation 10:220–235

    Article  PubMed  Google Scholar 

  • Newman EI (1988) Mycorrhizal links between plants: their functioning and ecological significance. Adv Ecol Res 18:243–271

    Article  Google Scholar 

  • Nriagu JO (2002) Arsenic poisoning through the ages. In: Frankenberger JWT (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 1–2

    Google Scholar 

  • Orlowska E, Godzik B, Turnau K (2012) Effect of different arbuscular mycorrhizal fungal isolates on growth and arsenic accumulation in Plantago lanceolata L. Environ Pollut 168:121–130

    Article  CAS  PubMed  Google Scholar 

  • Palenzuela J, Ferrol N, Boller T, Azcón-Aguilar C, Oehl F (2008) Otospora bareai, a new fungal species in the Glomeromycetes from a dolomitic shrub land in Sierra de Baza National Park (Granada, Spain). Mycologia 10:296–305

    Article  Google Scholar 

  • Panuccio MR, Logoteta B, Beone GM, Cagnin M, Cacco G (2012) Arsenic uptake and speciation and the effects of phosphate nutrition in hydroponically grown kikuyu grass (Pennisetum clandestinum Hochst). Environ Sci Pollut Res 19:3046–3053

    Article  CAS  Google Scholar 

  • Raab A, Schat H, Meharg AA, Feldmann J (2005) Uptake, translocation and transformation of arsenate and arsenite in sunflower (Helianthus annuus): formation of arsenic–phytochelatin complexes during exposure to high arsenic concentrations. New Phytol 16:551–558

    Article  Google Scholar 

  • Raab A, Williams PN, Meharg A, Feldmann J (2007) Uptake and translocation of inorganic and methylated arsenic species by plants. Environ Chem 4:197–203

    Article  CAS  Google Scholar 

  • Ralph SJ (2008) Arsenic-based antineoplastic drugs and their mechanisms of action. Met Based Drugs 200:Article ID 260146

    Google Scholar 

  • Roy S, Khasa DP, Greer CW (2007) Combining alders, frankiae, and mycorrhizae for the revegetation and remediation of contaminated ecosystems. Can J Bot 85:237–251

    Article  CAS  Google Scholar 

  • Schwartz MW, Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculums. Ecol Lett 9:501–515

    Article  PubMed  Google Scholar 

  • Shin H, Shin HS, Dewbre GR, Harrison MJ (2004) Phosphate transport in Arabidopsis, Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 3:629–642

    Article  Google Scholar 

  • Singh N, Ma LQ, Srivastava M, Rathinasabapathi B (2006) Metabolic adaptations to arsenic–induced oxidative stress in Pteris vittata L and Pteris ensiformis L. Plant Sci 17:274–282

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, San Diego

    Google Scholar 

  • Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ 7:1093–1103

    Google Scholar 

  • Smith SE, Christophersen HM, Pope S, Smith FA (2010) Arsenic uptake and toxicity in plants: integrating mycorrhizal influences. Plant Soil 327:1–21

    Article  CAS  Google Scholar 

  • Srivastava M, Ma LQ, Singh N, Singh S (2005) Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. J Exp Bot 5:1335–1342

    Article  Google Scholar 

  • Stone R (2008) Food safety: arsenic and paddy rice: a neglected cancer risk? Science 32:184–185

    Google Scholar 

  • Su YH, McGrath SP, Zhu YG, Zhao FJ (2008) Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata. New Phytol 18:434–441

    Article  Google Scholar 

  • Tripathi RD, Srivastava S, Seema M, Singh N, Tuli R, Gupta DK, Maathui FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 2:158–165

    Article  Google Scholar 

  • Tu C, Ma LQ (2002) Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. J Environ Qual 3:641–647

    Article  Google Scholar 

  • Tu C, Ma LQ, Bondada B (2002) Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation. J Environ Qual 3:1671–1675

    Article  Google Scholar 

  • Ultra VU, Tanaka S, Sakurai K, Iwasaki K (2007a) Effects of arbuscular mycorrhiza and phosphorus application on arsenic toxicity in sunflower (Helianthus annuus L.) and on the transformation of arsenic in the rhizosphere. Plant Soil 29:29–41

    Article  Google Scholar 

  • Ultra VUY, Tanaka S, Sakurai K, Iwasaki K (2007b) Arbuscular mycorrhizal fungus (Glomus aggregatum) influences biotransformation of arsenic in the rhizosphere of sunflower (Helianthus annuus L.). Soil Sci Plant Nutr 5:499–508

    Article  Google Scholar 

  • Walker C, Vestberg M, Demircik F, Stockinger H, Saito M, Sawaki H, Nishmura I, Schüßler A (2007a) Molecular phylogeny and new taxa in the Archaeosporales (Glomeromycota): Ambispora fennica gen. sp. nov., Ambisporaceae fam. nov., and emendation of Archaeospora and Archaeosporaceae. Mycol Res 11:137–153

    Article  Google Scholar 

  • Walker C, Vestberg M, Schüßler A (2007b) Nomenclatural clarifications in Glomeromycota. Mycol Res 11:253–255

    Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Wang ZH, Zhang JL, Christie P, Li XL (2008) Influence of inoculation with Glomus mosseae or Acaulospora morrowiae on arsenic uptake and translocation by maize. Plant Soil 31:235–244

    Article  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 32:385–408

    Article  Google Scholar 

  • Wenzel WW, Brandstetter A, Wutte H, Lombi E, Prohaska T, Stingeder G, Adriano DC (2002) Arsenic in field–collected soil solutions and extracts of contaminated soils and its implication to soil standards. J Plant Nutr Soil Sci 16:221–228

    Article  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598

    Article  CAS  PubMed  Google Scholar 

  • Williams PN, Villada A, Deacon C, Raab A, Figuerola J, Green AJ, Feldmann J, Meharg AA (2007) Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol 41:6854–6859

    Article  CAS  PubMed  Google Scholar 

  • Wu FY, Ye ZH, Wu SC, Wong MH (2007) Metal accumulation and arbuscular mycorrhizal status in metallicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredii Hance. Planta 22:1363–1378

    Article  Google Scholar 

  • Wu FY, Ye ZH, Wong MH (2009) Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation by Pteris vittata L. Chemosphere 76:1258–1264

    Article  CAS  PubMed  Google Scholar 

  • Xia YS, Chen BD, Christie P, Smith FA, Wang YS, Li XL (2007) Arsenic uptake by arbuscular mycorrhizal maize (Zea mays L.) grown in an arsenic-contaminated soil with added phosphorus. J Environ Sci (China) 1:1245–1251

    Article  Google Scholar 

  • Xie QE, Yan XL, Liao XY, Li X (2009) The arsenic hyperaccumulator fern Pteris vittata L. Environ Sci Technol 43:8488–8495

    Article  CAS  PubMed  Google Scholar 

  • Xu XY, McGrath SP, Zhao FJ (2007) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 17:590–599

    Article  Google Scholar 

  • Xu PL, Christie P, Liu Y, Zhang JL, Li XL (2008) The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake. Environ Pollut 15:215–220

    Article  Google Scholar 

  • Yang Q, Wang G, Tu S, Liao X, Yan X (2012) Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L. Int J Phytoremediation 14:89–99

    Article  PubMed  Google Scholar 

  • Yu Y, Zhang S, Huang H, Luo L, Wen B (2009) Arsenic accumulation and speciation in maize as affected by inoculation with arbuscular mycorrhizal fungus Glomus mosseae. J Agric Food Chem 5:3695–3701

    Article  Google Scholar 

  • Yu Y, Zhang SZ, Hunag HL, Wu NY (2010) Uptake of arsenic by maize inoculated with three different arbuscular mycorrhizal fungi. Commun Soil Sci Plant Anal 41:735–743

    Article  CAS  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 18:777–794

    Article  Google Scholar 

  • Zhu YG, Rosen BP (2009) Perspectives for genetic engineering for the phytoremediation of arsenic–contaminated environments: from imagination to reality? Curr Opin Biotechnol 2:220–224

    Article  Google Scholar 

Download references

Acknowledgments

Many interesting papers could not be cited due to space limitations, for which we apologize.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

He, X., Lilleskov, E. (2014). Arsenic Uptake and Phytoremediation Potential by Arbuscular Mycorrhizal Fungi. In: Solaiman, Z., Abbott, L., Varma, A. (eds) Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration. Soil Biology, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45370-4_16

Download citation

Publish with us

Policies and ethics