Advertisement

Role of Mycorrhizal Fungi in the Alleviation of Heavy Metal Toxicity in Plants

  • Hamid AmirEmail author
  • Philippe Jourand
  • Yvon Cavaloc
  • Marc Ducousso
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 41)

Abstract

Metal-rich soils, especially heavy metal-polluted soils and ultramafic soils, are generally toxic to non-adapted plants and microorganisms. The role of mycorrhizal fungi in the metal tolerance of adapted plant species has become clear in the last decade. This review aims to synthesize the findings of representative studies of the effects of mycorrhizas on the alleviation of heavy metal toxicity on plants and on the absorption/accumulation of heavy metals in their roots and shoots. The adaptation to heavy metals by mycorrhizal symbionts is associated with their efficiency in metal-rich soils. More than 80 % of the studies have indicated a positive role of mycorrhizal fungi in the adaptation of plants to heavy metals in these soils, but the relationships between plant tolerance to heavy metals and the absorption of metals are complex and depend on a range of biological, physical and chemical factors.

Keywords

Heavy Metal Arbuscular Mycorrhizal Mycorrhizal Fungus Heavy Metal Concentration Heavy Metal Toxicity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful to Valerie Medevielle for her technical support.

References

  1. Adriaensen K, van der Lelie D, Van Laere A, Vangronsveld J, Colpaert JV (2003) A zinc-adapted fungus protects pines from zinc stress. New Phytol 16:549–555Google Scholar
  2. Adriaensen K, Vangronsveld J, Colpaert JV (2006) A zinc tolerant Suillus bovinus improves growth of Zn-exposed Pinus sylvestris seedlings. Mycorrhiza 16:553–558PubMedGoogle Scholar
  3. Aggangan N, Dell B, Malajczuk N (1998) Effects of chromium and nickel on growth of the ectomycorrhizal fungus Pisolithus and formation of ectomycorrhizas on Eucalyptus urophylla S. T. Geoderma 84:15–27Google Scholar
  4. Ahonen-Jonnarth U, Finlay RD (2001) Effects of elevated nickel and cadmium concentrations on growth and nutrient uptake of mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant Soil 236:129–138Google Scholar
  5. Ahonen-Jonnarth U, Finlay RD, Van Hees PAW, Lundstrom US (2000) Organic acids produced by mycorrhizal Pinus sylvestris exposed to elevated aluminium and heavy metal concentrations. New Phytol 146:557–567Google Scholar
  6. Aloui A, Dumas-Gaudot E, Daher Z, van Tuinen D, Aschi-Smit S, Morandi D (2012) Influence of arbuscular mycorrhizal colonisation on cadmium induced Medicago truncatula root isoflavonoid accumulation. Plant Physiol Biochem 60:233–239PubMedGoogle Scholar
  7. Amir H, Ducousso M (2010) Les bactéries et les champignons du sol sur roches ultramafiques. In: L’Huillier L, Jaffré T, Wulf A (eds) Mines et environnement en Nouvelle-Calédonie : les milieux sur substrats ultramafiques et leur restauration. IAC Ed, Noumea, pp 129–145Google Scholar
  8. Amir H, Pineau R (2003) Release of Ni and Co by microbial activity in New Caledonian ultramafic soils. Can J Microbiol 49:288–293PubMedGoogle Scholar
  9. Amir H, Pineau R, Violette Z (1997) Premiers résultats sur les endomycorhizes des plantes de maquis miniers de Nouvelle-Calédonie. In: Jaffre T, Reeves RD, Becquer T (eds) The ecology of ultramafic and metalliferous areas. ORSTOM Ed, Nouméa, pp 79–85Google Scholar
  10. Amir H, Perrier N, Rigault F, Jaffré T (2007) Relationships between Ni-hyperaccumulation and mycorrhizal status of endemic plant species from New Caledonian ultramafic soils. Plant Soil 293:23–35Google Scholar
  11. Amir H, Jasper DA, Abbott LK (2008) Tolerance and induction of tolerance to Ni of arbuscular mycorrhizal fungi from New Caledonian ultramafic soils. Mycorrhiza 19:1–6PubMedGoogle Scholar
  12. Amir H, Lagrange A, Hassaïne N, Cavaloc Y (2013) Arbuscular mycorrhizal fungi from New Caledonian ultramafic soils improve tolerance to nickel of endemic plant species. Mycorrhiza 23:585–595PubMedGoogle Scholar
  13. Andrade SAL, Gratao PL, Silveira APD, Schiavinato MA, Azevedo RA, Mazzafera P (2009) Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations. Chemosphere 75:1363–1370PubMedGoogle Scholar
  14. Andrade SAL, Gratao PL, Azevedo RA, Silvera APD, Schiavinato MA, Mazzafera P (2010) Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environ Exp Bot 68:198–207Google Scholar
  15. Arlt M, Schwarz D, Franken P (2009) Analysis of mycorrhizal functioning using transcriptomics. In: Azcon-Aguilar C, Barea JM, Gianinazzi S (eds) Mycorrhizas-functional processes and ecological impact. Springer, Berlin, pp 47–58Google Scholar
  16. Arriagada CA, Herrera MA, Ocampo JA (2007) Beneficial effect of saprobe and arbuscular mycorrhizal fungi on growth of Eucalyptus globulus co-cultured with Glycine max in soil contaminated with heavy metals. J Environ Manage 84:93–99PubMedGoogle Scholar
  17. Audet P, Charest C (2007) Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: meta-analytical and conceptual perspectives. Environ Pollut 147:609–614PubMedGoogle Scholar
  18. Azcon R, Peralvarez MDC, Biro B, Roldan A, Ruiz-Lozano JM (2009) Antioxidant activities and metal acquisition in mycorrhizal plants growing in a heavy-metal multicontaminated soil amended with treated lignocellulosic agrowaste. Appl Soil Ecol 41:168–177Google Scholar
  19. Baum C, Hrynkiewicz K, Leinweber P, Meibner R (2006) Heavy-metal mobilization by mycorrhizal willows (Salix dasyclados). J Plant Nutr Soil Sci 169:516–522Google Scholar
  20. Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254:173–181PubMedGoogle Scholar
  21. Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2007) Metal induction of a Paxillus involutus metallothionein and its heterologous expression in Hebeloma cylindrosporum. New Phytol 174:151–158PubMedGoogle Scholar
  22. Berthelin J, Munier-Lamy C, Leyval C (1995) Effect of microorganisms on mobility of heavy metals in soils. In: Huang PM, Berthelin J, Bollag JM, McGill WB, Page AL (eds) Environmental impact of soil component interactions. Metals, other inorganics and microbial activities. CRC Lewis, London, pp 3–17Google Scholar
  23. Bissonnette L, St-Arnaud M, Labrecque M (2010) Phytoextraction of heavy metals by two Salicaceae clones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial. Plant Soil 332:55–67Google Scholar
  24. Blaudez D, Jacob C, Turnau K, Colpaert JV, Ahonen-Jonnarth U, Finlay R, Botton B, Chalot M (2000) Differential responses of ectomycorrhizal fungi to heavy metals in vitro. Mycol Res 104:1366–1371Google Scholar
  25. Bojarczuk K, Kieliszewska-Rokicka B (2010) Effect of ectomycorrhiza on Cu and Pb accumulation in leaves and roots of silver birch (Betula pendula Roth) seedlings growth in metal contaminated soil. Water Air Soil Pollut 207:227–240Google Scholar
  26. Boulet F, Lambers H (2005) Characterisation of arbuscular mycorrhizal fungi colonization in cluster roots of Hakea verrucosa F. Muell (Proteaceae), and its effect on growth and nutrient acquisition in ultramafic soil. Plant Soil 269:357–367Google Scholar
  27. Branco S, Ree RH (2010) Serpentine soils do not limit mycorrhizal fungal diversity. PLoS One 5(7):e11757. doi: 10.1371/journal.pone.0011757 PubMedCentralPubMedGoogle Scholar
  28. Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77Google Scholar
  29. Cabala J, Krupa P, Misz-Kennan M (2009) Heavy metals in mycorrhizal rhizospheres contaminated by Zn-Pb mining and smelting around Olkusz in southern Poland. Water Air Soil Pollut 199:139–149Google Scholar
  30. Carvalho LM, Cacador I, Martins-Loucao MA (2006) Arbuscular mycorrhizal fungi enhance root cadmium and copper accumulation in the roots of the salt marsh plant Aster tripolium L. Plant Soil 285:161–169Google Scholar
  31. Cavagnaro TR, Dickson S, Smith FA (2010) Arbuscular mycorrhizas modify plant responses to soil zinc addition. Plant Soil 329:307–313Google Scholar
  32. Chen B, Roos P, Borgaard OK, Zhu YG, Jakobsen I (2005) Mycorrhiza and root hairs in barley enhance acquisition of phosphorus and uranium from phosphate rock but mycorrhiza decreases root to shoot uranium transfer. New Phytol 165:591–598PubMedGoogle Scholar
  33. Colpaert JV, Wevers JHL, Krznaric E, Adriaensen K (2011) How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Ann For Sci 68:17–24Google Scholar
  34. Cornejo P, Meier S, Borie G, Rillig MC, Borie F (2008) Glomalin-related protein in a Mediterranean ecosystem affected by copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 406:154–160PubMedGoogle Scholar
  35. Courbot M, Diez L, Ruotolo R, Chalot M, Leroy P (2004) Cadmium-responsive thiols in the ectomycorrhizal fungus Paxillus involutus. Appl Environ Microbiol 70:7413–7417PubMedCentralPubMedGoogle Scholar
  36. Deram A, Languereau-Leman F, Howsam M, Petit D, Van Haluwyn C (2008) Seasonal patterns of cadmium accumulation in Arrhenatherum elatius (Poaceae): influence of mycorrhizal and endophytic fungal colonisation. Soil Biol Biochem 40:845–848Google Scholar
  37. Diaz G, Azcon-Aguilar C, Honrubia M (1996) Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis Cytisoides. Plant Soil 180:241–249Google Scholar
  38. Dubkova P, Suda J, Sudova R (2012) The symbiosis with arbuscular mycorrhizal fungi contributes to plant tolerance to serpentine edaphic stress. Soil Biol Biochem 44:56–64Google Scholar
  39. Dučić T, Parladé J, Polle A (2008) The influence of the ectomycorrhizal fungus Rhizopogon subareolatus on growth and nutrient element localisation in two varieties of Douglas fir (Pseudotsuga menziesii var. menziesii and var. glauca) in response to manganese stress. Mycorrhiza 18:227–239PubMedCentralPubMedGoogle Scholar
  40. Fernando DR, Woodrow IE, Jaffré T, Dumontet V, Marshall AT, Baker AJM (2008) Foliar manganese accumulation by Maytenus founieri (Celastraceae) in its native New Caledonian habitats: populational variation and localization by X-ray microanalysis. New Phytol 177:178–185PubMedGoogle Scholar
  41. Ferrol N, Gonzalez-Guerrero M, Valderas A, Benabdallah K, Azcon-Aguilar C (2009) Survival strategies of arbuscular mycorrhizal fungi in Cu-polluted environments. Phytochem Rev 8:551–559Google Scholar
  42. Galli U, Meier M, Brunold C (1993) Effects of cadmium on nonmycorrhizal and mycorrhizal Norway Spruce seedlings Picea abies (L.) Karst and its ectomycorrhizal fungus Laccaria laccata (Scop ex Fr) Bk and Br, sulfate reduction, thiols and distribution of the heavy-metal. New Phytol 125:837–843Google Scholar
  43. Gamalero E, Lingua G, Berta G, Glick B (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–514PubMedGoogle Scholar
  44. Gildon A, Tinker PB (1981) A heavy metal-tolerant strain of a mycorrhizal fungus. Trans Br Mycol Soc 77:648–649Google Scholar
  45. Gimmler H, de Jesus J, Greiser A (2001) Heavy metal resistance of the extreme acidotolerant filamentous fungus Bispora sp. Microb Ecol 42:87–98PubMedGoogle Scholar
  46. Gonçalves SC, Portugal A, Goncalves MT, Vieira R, Martins-Loucao MA, Freitas H (2007) Genetic diversity and differential in vitro responses to Ni in Cenococcum geophilum isolates from serpentine soils in Portugal. Mycorrhiza 17:677–686PubMedGoogle Scholar
  47. Gonçalves SC, Martins-Louçao MA, Freitas H (2009) Evidence of adaptive tolerance to nickel in isolates of Cenococcum geophilum from serpentine soils. Mycorrhiza 19:221–230PubMedGoogle Scholar
  48. Gonzalez-Chavez C, Haen JD, Vangronsveld J, Dodd JC (2002) Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil. Plant Soil 240:287–297Google Scholar
  49. Gonzalez-Guerrero M, Cano C, Azcon-Aguilar C, Ferrol N (2007) GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress. Mycorrhiza 17:327–335PubMedGoogle Scholar
  50. Gonzalez-Guerrero M, Melville LH, Ferrol N, Lott JNA, Azcon-Aguilar C, Peterson RL (2008) Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Can J Microbiol 54:103–110PubMedGoogle Scholar
  51. Griffioen WAJ (1994) Characterization of a heavy metal tolerant endomycorrhizal fungus from the surroundings of a zinc refinery. Mycorrhiza 4:197–200Google Scholar
  52. Guo Y, George E, Marschner H (1996) Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants. Plant Soil 184:195–205Google Scholar
  53. Gustafson DJ, Casper BB (2006) Differential host plant performance as a function of soil arbuscular mycorrhizal fungal communities: experimentally manipulating co-occurring Glomus species. Plant Ecol 186:257–263Google Scholar
  54. Hartley J, Cairney JWG, Meharg AA (1997) Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant Soil 189:303–319Google Scholar
  55. Hassan Sel D, Boon E, St-Arnaud M, Hijri M (2011) Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal-polluted soils. Mol Ecol 20:3469–3483PubMedGoogle Scholar
  56. Hegedüs N, Tamas E, Szilagyi J, Karanyi Z, Nagy I, Penninckx MJ, Pocsi I (2007) Effects of heavy metals on the glutathione status in different ectomycorrhizal Paxillus involutus strains. World J Microbiol Biotechol 23:1339–1343Google Scholar
  57. Hildebrandt U, Kaldorf M, Bothe H (1999) The zinc violet and colonization by arbuscular mycorrhizal fungi. J Plant Physiol 154:709–717Google Scholar
  58. Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146PubMedGoogle Scholar
  59. Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152Google Scholar
  60. Honglin H, Shuzhen Z, Chen BD, Wu N, Shan XQ, Christ P (2006) Uptake of atrazine and cadmium from soil by maize (Zea mays L.) in association with the arbuscular mycorrhizal fungus Glomus etunicatum. J Agric Food Chem 54:9377–9382Google Scholar
  61. Hrynkieiuicz K, Haug I, Baum C (2008) Ectomycorrhizal community structure under willows at former ore mining sites. Eur J Soil Biol 44:37–44Google Scholar
  62. Jacob C, Courbot M, Brun A, Steinman HM, Jaquot JP, Botton B, Chalot M (2001) Molecular cloning, characterizing and regulation by cadmium of a superoxide dismutase from the ectomycorrhizal fungus Paxillus involutus. Eur J Biochem 268:3223–3232PubMedGoogle Scholar
  63. Janouskova M, Vosatka M, Rossi L, Lugon-Moulin N (2007) Effects of arbuscular mycorrhizal inoculation on cadmium accumulation by different tobacco (Nicotiana tabacum L.) types. Appl Soil Ecol 35:502–510Google Scholar
  64. Jentschke G, Goldbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109:107–116Google Scholar
  65. Ji B, Bentivenga SP, Casper BB (2012) Comparisons of AMF fungal spore communities with the same hosts but different soil chemistries over local geographic scales. Oecologia 168:187–197PubMedGoogle Scholar
  66. Joner EJ, Leyval C (2001) Time-course of heavy metal uptake in maize and clover as affected by root density and different mycorrhizal inoculation regimes. Biol Fertil Soils 33:351–357Google Scholar
  67. Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234Google Scholar
  68. Joshi UN, Luthra YP (2000) An overview of heavy metals: impact and remediation. Curr Sci 78:2–4Google Scholar
  69. Jourand P, Ducousso M, Reid R, Majorel C, Richert C, Riss J, Lebrun M (2010a) Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of a host plant at toxic nickel concentrations. Tree Physiol 30:1311–1319PubMedGoogle Scholar
  70. Jourand P, Ducousso M, Loulergue-Majorel C, Hannibal L, Santoni S, Prin Y, Lebrun M (2010b) Ultramafic soils from New Caledonia structure Pisolithus albus in ecotype. FEMS Microbiol Ecol 72:238–249PubMedGoogle Scholar
  71. Kazakou E, Dimitrakopoulos PG, Baker AJM, Reeves RD, Trumbis AY (2008) Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol Rev 83:495–508PubMedGoogle Scholar
  72. Khade SW, Adholeya A (2007) Feasible bioremediation through arbuscular mycorrhizal fungi imparting heavy metal tolerance: a retrospective. Bioremediation J 11:33–43Google Scholar
  73. Khan AG, Kuek C, Chauhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207PubMedGoogle Scholar
  74. Krupa P, Kozdroj J (2007) Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus sylvestris L.) seedlings. Water Air Soil Pollut 182:83–90Google Scholar
  75. L’Huillier L, Wulf A, Gâteblé G, Fogliani B, Zongo C, Jaffré T (2010) La restauration des sites miniers. In: L’Huillier L, Jaffré T, Wulf A (eds) Mines et environnement en Nouvelle-Calédonie : les milieux sur substrats ultramafiques et leur restauration. IAC Ed, Noumea, pp 147–230Google Scholar
  76. Lagrange A, Ducousso M, Jourand P, Majorel C, Amir H (2011) New insights into the mycorrhizal status of Cyperaceae from ultramafic soils in New Caledonia. Can J Microbiol 57:21–28PubMedGoogle Scholar
  77. Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115Google Scholar
  78. Lanfranco L, Bolchi A, Ros S, Ottonello S, Bonfante P (2002) Differential expression of metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiol 130:58–67PubMedCentralPubMedGoogle Scholar
  79. Lebeau T, Braud A, Jezequel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153:497–522PubMedGoogle Scholar
  80. Leung HM, Ye ZH, Wong MH (2006) Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils. Environ Pollut 139:1–8PubMedGoogle Scholar
  81. Leung HM, Ye ZH, Wong MH (2007) Survival strategies of plants associated with arbuscular mycorrhizal fungi on toxic mine tailings. Chemosphere 66:905–915PubMedGoogle Scholar
  82. Leyval C, Joner EJ (2001) Bioavailability of heavy metals in the mycorrhizosphere. In: Gobran GR, Wenzel WW, Lombi E (eds) Trace elements in the rhizosphere. CRC, New York, pp 165–185Google Scholar
  83. Leyval C, Singh BR, Joner EJ (1995) Occurrence and infectivity of arbuscular mycorrhizal fungi in some Norwegian soils influenced by heavy metals and soils properties. Water Air Soil Pollut 84:203–216Google Scholar
  84. Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153Google Scholar
  85. Li Y, Peng J, Shi P, Zhao B (2009) The effect of Cd on mycorrhizal development and enzyme activity of Glomus mosseae and Glomus intraradices in Astragalus sinicus L. Chemosphere 75:894–899PubMedGoogle Scholar
  86. Lin AJ, Zhang XH, Wong MH, Ye ZH, Lou LQ, Wang YS, Zhu YG (2007) Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization. Environ Geochem Health 29:473–481PubMedGoogle Scholar
  87. Lingua G, Franchin C, Todeschini V, Castiglione S, Biondi S, Burlando B, Parravicini V, Torrigiani P, Berta G (2008) Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones. Environ Pollut 153:137–147PubMedGoogle Scholar
  88. Ma Y, Dickinson NM, Wong MH (2006) Beneficial effects of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous trees on Pb/Zn mine tailings. Soil Biol Biochem 38:1403–1412Google Scholar
  89. Machuka A, Pereira G, Aguiar A, Milagres AMF (2007) Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations. Lett Appl Microbiol 44:7–12Google Scholar
  90. Majorel C, Hannibal L, Soupe M, Carriconde F, Ducousso M, Lebrun M, Jourand P (2012) Tracking nickel-adaptive biomarkers in Pisolithus albus from New Caledonia using a transcriptomic approach. Mol Ecol 21:2208–2223PubMedGoogle Scholar
  91. Marques APGC, Oliveira RS, Rangel AOSS, Castro PML (2006) Zinc accumulation in Solanum nigrum is enhanced by different arbuscular mycorrhizal fungi. Chemosphere 65:1256–1263PubMedGoogle Scholar
  92. Marques APGC, Oliveira RS, Samardjieva KA, Pissara J, Rangel AOSS, Castro PML (2007) Solanum nigrum grown in contaminated soil: effect of arbuscular mycorrhizal fungi on zinc accumulation and histolocalisation. Environ Pollut 145:691–699PubMedGoogle Scholar
  93. Marques APGC, Oliveira RS, Rangel AOSS, Castro PML (2008) Application of manure and compost contaminated soils and its effect on zinc accumulation by Solanum nigrum inoculated with arbuscular mycorrhizal fungi. Environ Pollut 151:608–620PubMedGoogle Scholar
  94. Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102Google Scholar
  95. Medina A, Vassilev N, Azcon R (2010) The interactive effect of an AM fungus and an organic amendment with regards to improving inoculum potential and the growth and nutrition of Trifolium repens in Cd-contaminated soils. Appl Soil Ecol 44:181–189Google Scholar
  96. Meharg AA (2003) The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycol Res 107:1253–1265PubMedGoogle Scholar
  97. Neagoe A, Lordache V, Bergmann H, Kothe E (2013) Patterns of effects of arbuscular mycorrhizal fungi on plants grown in contaminated soil. J Plant Nutr Soil 176:273–286Google Scholar
  98. Orlowska E, Mesjasz-Przybylowicz J, Przybylowicz W, Turnau K (2008) Nuclear macroprobe studies of elemental distribution in mycorrhizal and non-mycorrhizal roots of Ni-hyperaccumulator Berkheya coddii. X Ray Spectrom 37:129–132Google Scholar
  99. Orlowska E, Orlowski D, Mesjasz-Przybylowicz J, Turnau K (2011a) Role of mycorrhizal colonization in plant establishment on an alkaline gold mine tailing. Int J Phytoremediation 13:185–205PubMedGoogle Scholar
  100. Orlowska E, Przybylowicz W, Orlowski D, Turnau K, Mesjasz-Przybylowicz J (2011b) The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environ Pollut 159:3730–3738PubMedGoogle Scholar
  101. Orlowska E, Godzik B, Turnau K (2012) Effect of different arbuscular mycorrhizal fungal isolates on growth and arsenic accumulation in Plantago lanceolata L. Environ Pollut 168:121–130PubMedGoogle Scholar
  102. Ortega-Larrocea MP, Siebe C, Estrada A, Webster R (2007) Mycorrhizal inoculums potential of arbuscular mycorrhizal fungi in soils irrigated with wastewater for various lengths of time, as affected by heavy metals and available P. Appl Soil Ecol 37:129–138Google Scholar
  103. Ortega-Larrocea MP, Xoconostle-Cazares B, Moldano-Mendoza IE, Carrillo-Gonzalez R, Hernández-Hernández J, Garduño MD, López-Meyer M, Gómez-Flores L, González-Chávez M (2010) Plant and fungal biodiversity from metal mine wastes under remediation at Zimapan, Hidalgo, Mexico. Environ Pollut 158:1922–1931Google Scholar
  104. Ouziad F, Hildlebrandt U, Schmelzer E, Bothe H (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634–649PubMedGoogle Scholar
  105. Pawlowska TE, Blaszkowski J, Ruhling A (1996) The mycorrhiza status of plants colonizing a calamine spoil mound in southern Poland. Mycorrhiza 6:499–505Google Scholar
  106. Perrier N (2005) Bio-Géodiversité fonctionnelle des sols latéritiques miniers : application à la restauration écologique (massif du Koniambo, Nouvelle-Calédonie). PhD thesis, University of New Caledonia, NoumeaGoogle Scholar
  107. Perrier N, Amir H, Colin F (2006) Occurrence of mycorrhizal symbioses in the metal-rich lateritic soils of the Koniambo Massif, New Caledonia. Mycorrhiza 16:449–458PubMedGoogle Scholar
  108. Purin S, Rillig MC (2008) Immuno-cytolocalization of glomalin in the mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. Soil Biol Biochem 40:1000–1003Google Scholar
  109. Rajkumar M, Sandhia S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574PubMedGoogle Scholar
  110. Ray P, Tiwari R, Reddy GU, Adholeya A (2005) Detecting the heavy metal tolerance level in ectomycorrhizal fungi in vitro. World J Microbial Biotechnol 21:309–315Google Scholar
  111. Redon PO, Béguiristain T, Leyval C (2008) Influence of Glomus intraradices on Cd partitioning in a pot experiment with Medicago truncatula in four contaminated soils. Soil Biol Biochem 40:2710–2712Google Scholar
  112. Redon PO, Béguiristain T, Leyval C (2009) Differential effects of AM fungal isolates on Medicago truncatula growth and metal uptake in a multimetallic (Cd, Zn, Pb) contaminated agricultural soil. Mycorrhiza 19:187–195PubMedGoogle Scholar
  113. Regvar M, Vogel K, Irgel N, Wraber T, Hildebrandt U, Wilde P, Bothe H (2003) Colonization of pennycresses (Thlaspi spp.) of the Brassicaceae by arbuscular mycorrhizal fungi. J Plant Physiol 160:615–626PubMedGoogle Scholar
  114. Repetto O, Bestel-Corre G, Dumas-Gaudot E, Berta G, Gianinazzi-pearson V, Gianinazzi S (2003) Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots. New Phytol 157:555–567Google Scholar
  115. Rivera-Becerril F, van Tuinen D, Martin-Laurent F, Metwally A, Dietz KJ, Gianinazzi S, Gianinazzi-pearson V (2005) Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. Mycorrhiza 16:51–60PubMedGoogle Scholar
  116. Rufyikiri G, Huysmans L, Wannijn J, Van Hees M, Leyval C, Jacobsen I (2004) Arbuscular mycorrhizal fungi can decrease the uptake of uranium by subterranean clover grown at high levels of uranium in soil. Environ Pollut 130:427–436PubMedGoogle Scholar
  117. Sadeque HFR, Kilham K, Alexander I (2006) Influences of arbuscular fungus Glomus mosseae on growth and nutrition of lentil irrigated with arsenic contaminated water: rhizosphere: perspectives and challenges. Plant Soil 283:33–41Google Scholar
  118. Schechter SP, Bruns TD (2012) Edaphic sorting drives arbuscular mycorrhizal fungal community assembly in a serpentine/non-serpentine mosaic landscape. Ecosphere 3(54):art 42Google Scholar
  119. Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365PubMedGoogle Scholar
  120. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, San DiegoGoogle Scholar
  121. Smith SE, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20Google Scholar
  122. Stommel M, Mann P, Franken P (2001) EST-library construction using spore RNA of the arbuscular mycorrhizal fungus Gigaspora rosea. Mycorrhiza 10:281–285Google Scholar
  123. Sudova R, Doubkova P, Vosatka M (2008) Mycorrhizal association of Agrostis capillaris and Glomus intraradices under heavy metal stress: combination of plant clones and fungal isolates from contaminated substrates. Appl Soil Ecol 40:19–29Google Scholar
  124. Tseng CC, Wang JY, Yang L (2009) Accumulation of copper, lead and zinc by in situ plants inoculated with AM fungi in multicontaminated soil. Commun Soil Sci Plant Anal 40:2122Google Scholar
  125. Tullio M, Pierandrei F, Salerno A, Rea E (2003) Tolerance to cadmium of vesicular arbuscular mycorrhizae spores isolated from cadmium-polluted and unpolluted soil. Biol Fertil Soils 37:211–214Google Scholar
  126. Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13:185–190PubMedGoogle Scholar
  127. Urban A, Puschenreiter M, Strauss J, Gorfer M (2008) Diversity and structure of ectomycorrhizal and co-associated fungal communities in a serpentine soils. Mycorrhiza 18:339–354PubMedGoogle Scholar
  128. Vallino M, Massa N, Lumini E, Bianciotto V, Berta G, Bonfante P (2006) Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in northern Italy. Environ Microbiol 8:971–983PubMedGoogle Scholar
  129. Vallino M, Martino E, Boella F, Murat C, Chiapello M, Peretto S (2009) Cu, Zn superoxide dismutase and zinc stress in the metal-tolerant ericoid mycorrhizal fungus Oidiodendron maius Zn. FEMS Microbiol Lett 293:48–57PubMedGoogle Scholar
  130. Vivas A, Barea JM, Azcon R (2005) Interactive effect of Brevibacillus brevis and Glomus mosseae, both isolated from Cd contaminated soil, on plant growth, physiological mycorrhizal fungal characteristics and soil enzymatic activities in Cd polluted soil. Environ Pollut 134:257–266PubMedGoogle Scholar
  131. Vodnik D, Grcman H, Macek I, van Elteren JT, Kovačevič M (2008) The contribution of Glomalin-related protein to Pb and Zn sequestration in polluted soil. Sci Total Environ 392:130–136PubMedGoogle Scholar
  132. Walker RF, McLaughlin SB, West DC (2004) Establishment of sweet birch on surface mine spoil as influenced by mycorrhizal inoculation and fertility. Restor Ecol 12:8–19Google Scholar
  133. Weissenhorn I, Leyval C, Belgy G, Berthelin J (1995) Arbuscular mycorrhizal contribution to heavy metal uptake by maize (Zea mays L.) in pot culture with contaminated soil. Mycorrhiza 5:245–251Google Scholar
  134. Whiting SN, Reeves RD, Richards D, Johnson MS, Cooke JA, Malaisse F, Paton A, Smith JAC, Angle JS, Ginocchio R, Jaffré T, Johns R, McIntyre T, Purvis OW, Salt DE, Schat H, Zhao FJ, Baker AJM (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor Ecol 12:106–116Google Scholar
  135. Wu FY, Ye ZH, Wong MH (2009) Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation by Pteris vittata L. Chemosphere 76:1258–1264PubMedGoogle Scholar
  136. Wu FY, Be YL, Leung HM, Ye ZH, Lin XG, Wong MH (2010) Accumulation of As, Pb, Zn, Cd and Cu and arbuscular mycorrhizal status in populations of Cynodon dactylon grown on metal-contaminated soils. Appl Soil Ecol 44:213–218Google Scholar
  137. Zhang XH, Zhu YG, Chen BD, Lin AJ, Smith SE, Smith FA (2005) Arbuscular mycorrhizal fungi contribute to resistance of upland rice to combined metal contamination of soil. J Plant Nutr 28:2065–2077Google Scholar
  138. Zhang XH, Lin AJ, Gao YL, Reid RJ, Wong MH, Zhu YG (2009) Arbuscular mycorrhizal colonisation increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake. Soil Biol Biochem 41:930–935Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hamid Amir
    • 1
    Email author
  • Philippe Jourand
    • 2
  • Yvon Cavaloc
    • 1
  • Marc Ducousso
    • 2
  1. 1.Laboratoire Insulaire du Vivant et de l’Environnement (LIVE), EA 4243Université de la Nouvelle-CalédonieNouméa CedexNew Caledonia
  2. 2.Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR 113 CIRAD/INRA/IRD/SupAgro/UMII, Centre IRDNouméa cedexNew Caledonia

Personalised recommendations