Function of Mycorrhizae in Extreme Environments

  • Catherine A. ZabinskiEmail author
  • Rebecca A. Bunn
Part of the Soil Biology book series (SOILBIOL, volume 41)


The mycorrhizal symbiosis is an ancient interaction between plants and fungi, the basis of the symbiosis being enhanced nutrient uptake for the host plant and a carbon source for the fungus. In this chapter we explore the potential for mycorrhizae to enhance plant survival and growth in extreme environments, specifically via enhanced nutrient uptake, protecting the host plant from soil contaminants and enhancement of stress-reducing biochemicals. We include a case study of mycorrhizal function in high-temperature soils. Further research to identify the potential for acclimation versus adaptation of mycorrhizal fungi can better inform management applications of mycorrhizae on disturbed sites.


Host Plant Mycorrhizal Fungus Extreme Environment Mycorrhizal Plant Arbuscular Mycorrhizae 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Addy HD, Boswell EP, Koide RT (1998) Low temperature acclimation and freezing resistance of extraradical VA mycorrhizal hyphae. Mycol Res 102(5):582–586CrossRefGoogle Scholar
  2. Alvarez M, Huygens D, Fenandez C, Gacitúa Y, Olivares E, Saavedra I, Alberdi M, Valenzuela E (2009) Effects of ectomycorrhizal colonization and drought on reactive oxygen species metabolism of Nothofagus dombeyi roots. Tree Physiol 29:1047–1057PubMedCrossRefGoogle Scholar
  3. Amir H, Jasper DA, Abbott LK (2008) Tolerance and induction of tolerance to Ni of arbuscular mycorrhizal fungi from New Caledonian ultramafic soils. Mycorrhiza 19:1–6PubMedCrossRefGoogle Scholar
  4. Antunes PM, Koch AM, Morton JB, Rillig MC, Klironomos JN (2011) Evidence for functional divergence in arbuscular mycorrhizal fungi from contrasting climatic origins. New Phytol 189:507–514PubMedCrossRefGoogle Scholar
  5. Appoloni S, Lekberg Y, Tercek M, Zabinski C, Redecker D (2008) Molecular community analysis of arbuscular mycorrhizal fungi in roots of geothermal soils in Yellowstone National Park (USA). Microb Ecol 56(4):649–659PubMedCrossRefGoogle Scholar
  6. Audet P, Charest C (2009) Contribution of AM symbiosis to in vitro root metal uptake: from trace to toxic metal conditions. Botany 87:913–921CrossRefGoogle Scholar
  7. Azcón R, del Carmen PM, Roldán Barea JM (2010) Arbuscular mycorrhizal fungi, Bacillus cereus, and Candida parapsilosis from a multicontaminated soil alleviate metal toxicity in plants. Microb Ecol 59:668–677PubMedCrossRefGoogle Scholar
  8. Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi Issue. FEMS Microbiol Lett 254:173–181PubMedCrossRefGoogle Scholar
  9. Bothe H, Turnau K, Regvar M (2010) The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza 20:445–457PubMedCrossRefGoogle Scholar
  10. Boyd R, Furbank RT, Read DJ (1986) Ectomycorrhiza and the water relations of trees. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetic aspects of mycorrhizae. INRA, Paris, pp 689–694Google Scholar
  11. Bressano M, Curetti M, Glachero L, Gil SV, Cabello M, DA March D, Luna CM (2010) Mycorrhizal fungi symbiosis as a strategy against oxidative stress in soybean plants. J Plant Physiol 167:1622–1626PubMedCrossRefGoogle Scholar
  12. Bunn RA, Zabinski CA (2003) Arbuscular mycorrhizae in thermal-influenced soils in Yellowstone National Park. West N Am Nat 63:406–415Google Scholar
  13. Bunn R, Lekberg Y, Zabinski C (2009) Arbuscular mycorrhizal fungi ameliorate temperature stress in thermophilic plants. Ecology 90:1378–1388PubMedCrossRefGoogle Scholar
  14. Canganella F, Wiegel J (2011) Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond. Naturwurwissenschaften 98:253–279CrossRefGoogle Scholar
  15. Casada RD, James PC, Espie RHM (1996) The “file drawer problem” of non-significant results: does it apply to biological research? Oikos 76:591–593CrossRefGoogle Scholar
  16. Chalk PM, Alves BJR, Boddey RM, Urquiaga S (2010) Integrated effects of abiotic stresses on inoculant performance, legume growth and symbiotic dependence estimated by N-15 dilution. Plant Soil 328:1–16CrossRefGoogle Scholar
  17. Chen B, Roos P, Borggaard OK, Zhu Y-G, Jakobsen I (2005) Mycorrhiza and root hairs in barley enhance acquisition of phosphorus and uranium from phosphate rock but mycorrhiza decreases root to shoot uranium transfer. New Phytol 165:591–598PubMedCrossRefGoogle Scholar
  18. Colpaert JV, Wevers JHL, Krznaric E, Adriaensen K (2011) How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Ann For Sci 68:17–24CrossRefGoogle Scholar
  19. Ehinger MO, Croll D, Koch AM, Sanders IR (2012) Significant genetic and phenotypic changes arising from clonal growth of a single spore of an arbuscular mycorrhizal fungus over multiple generations. New Phytol 196:853–861PubMedCrossRefGoogle Scholar
  20. Estrada B, Aroca R, Barea JM, Ruiz-Lozano JM (2013) Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Sci 201–202:42–51PubMedCrossRefGoogle Scholar
  21. Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280PubMedCentralPubMedCrossRefGoogle Scholar
  22. Ferrol N, González-Guerrero M, Valderas A, Benabdellah K, Azcón-Aguilar C (2009) Survival strategies of arbuscular mycorrhizal fungi in Cu-polluted environments. Phytochem Rev 8:551–559CrossRefGoogle Scholar
  23. Friese CF, Allen MF (1991) Spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycologia 83:409–418CrossRefGoogle Scholar
  24. Gao Y, Chen Z, Ling W, Huang J (2010) Arbuscular mycorrhizal fungal hyphae contribute to the uptake of polycyclic aromatic hydrocarbons by plant roots. Bioresour Technol 101:6895–6901PubMedCrossRefGoogle Scholar
  25. Garg N, Manchanda G (2008) Effect of arbuscular mycorrhizal inoculation on salt-induced nodule senescence in Cajanus cajan (pigeonpea). J Plant Growth Regul 27:115–124CrossRefGoogle Scholar
  26. Gill S, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930PubMedCrossRefGoogle Scholar
  27. Gostinčar C, Grube M, de Hoog S, Zalar P, Gunde-Cimerman N (2010) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71:2–11PubMedCrossRefGoogle Scholar
  28. Gunderson JJ, Knight JD, Van Rees KCJ (2007) Impact of ectomycorrhizal colonization of hybrid poplar on the remediation of diesel-contaminated soil. J Environ Qual 36:927–934PubMedCrossRefGoogle Scholar
  29. Harrison JP, Gheeraert N, Tsigelnitskiy D, Cockell CS (2013) The limits for life under multiple extremes. Trends Microbiol 21:204–212PubMedCrossRefGoogle Scholar
  30. Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146PubMedCrossRefGoogle Scholar
  31. Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC, Wilson GWT, Klironomos JN, Umbanhowar J (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407PubMedCrossRefGoogle Scholar
  32. Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135:575–585CrossRefGoogle Scholar
  33. Johnson NC, Wilson GWT, Bowkers MA, Wilson JA, Miller RM (2010) Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc Natl Acad Sci U S A 107:2093–2098PubMedCentralPubMedCrossRefGoogle Scholar
  34. Joner EJ, Leyval C (1997) Uptake of 109Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytol 135:353–360CrossRefGoogle Scholar
  35. Jourand P, Ducousso M, Loulergue-Majorel C, Hannibal L, Santoni S, Prin Y, Lebrun M (2010) Ultramafic soils from New Caledonia structure Pisolithus albus in ecotype. FEMS Microbiol Ecol 72:238–249PubMedCrossRefGoogle Scholar
  36. Kawecki TJ (2008) Adaptation to marginal habitats. Annu Rev Ecol Evol Syst 39:321–342CrossRefGoogle Scholar
  37. Koch AM, Kuhn G, Fontanillas P, Fumagalli L, Goudet I, Sanders IR (2004) High genetic variability and low local diversity in a population of arbuscular mycorrhizal fungi. Proc Natl Acad Sci U S A 101:2369–2374PubMedCentralPubMedCrossRefGoogle Scholar
  38. Koide R, Elliott G (1989) Cost, benefit, and efficiency of the vesicular-arbuscular mycorrhizal symbiosis. Funct Ecol 3:252–255Google Scholar
  39. Lehto T, Zwiazek JJ (2011) Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21:71–90PubMedCrossRefGoogle Scholar
  40. Lekberg Y, Koide RT (2008) Effect of soil moisture and temperature during fallow on survival of contrasting isolates of arbuscular mycorrhizal fungi. Botany 86:1117–1124CrossRefGoogle Scholar
  41. Lekberg Y, Meadow J, Rohr JR, Redecker D, Zabinski CA (2011) Importance of dispersal and thermal environment for mycorrhizal communities: lessons from Yellowstone National Park. Ecology 92:1292–1302PubMedCrossRefGoogle Scholar
  42. Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153CrossRefGoogle Scholar
  43. Maillet F, Poinsot V, André O, Peuch-Pagès V, Haouv A, Guenier M, Cromer L, Giraudet D, Formey D, Niebel A, Andres Martinez E, Driguez H, Bécard G, Dénarié J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63PubMedCrossRefGoogle Scholar
  44. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, San Diego, p 889Google Scholar
  45. McMillen BG, Juniper S, Abbott LK (1998) Inhibition of hyphal growth of a vesicular–arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil Biol Biochem 30:1639–1646CrossRefGoogle Scholar
  46. Meadow JF, Zabinski CA (2012) Linking symbiont community structures in a model arbuscular mycorrhizal system. New Phytol 194:800–809PubMedCrossRefGoogle Scholar
  47. Meharg AA (2003) The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycol Res 107:1253–1265PubMedCrossRefGoogle Scholar
  48. Meharg AA, Cairney JWG (1999) Co-evolution of mycorrhizal symbionts and their hosts to metal contaminated environments. Adv Ecol Res 30:70–112Google Scholar
  49. Morozkina EV, Slutskaya ES, Fedorova TV, Tugay TI, Golubeva LI, Koroleva OV (2010) Extremophilic microorganisms: biochemical adaptation and biotechnological application (review). Appl Biochem 46:1–14CrossRefGoogle Scholar
  50. Nanda AK, Andrio E, Marino D, Pauly N, Dunand C (2010) Reactive oxygen species during plant-microorganism early interactions. J Integr Plant Biol 52:195–204PubMedCrossRefGoogle Scholar
  51. Neagoe A, Iordache V, Bergmann H, Kothe E (2013) Patterns of effects of arbuscular mycorrhizal fungi on plants grown in contaminated soil. J Plant Nutr Soil Sci 176:273–286CrossRefGoogle Scholar
  52. Parsons PA (1991) Evolutionary rates: stress and species boundaries. Annu Rev Ecol Syst 22:1–18CrossRefGoogle Scholar
  53. Pawlowska TE, Taylor JW (2004) Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature 427:733–737PubMedCrossRefGoogle Scholar
  54. Plassard C, Dell B (2010) Phosphorus nutrition of mycorrhizal trees. Tree Physiol 30:1129–1139PubMedCrossRefGoogle Scholar
  55. Porcel R, Aroca R, Azcón R, Ruiz-Lozano JM (2006) PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Mol Biol 60:389–404PubMedCrossRefGoogle Scholar
  56. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53PubMedCrossRefGoogle Scholar
  57. Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114PubMedCrossRefGoogle Scholar
  58. Rosendahl S (2008) Communities, populations and individuals of arbuscular mycorrhizal fungi. New Phytol 178:253–266PubMedCrossRefGoogle Scholar
  59. Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101PubMedCrossRefGoogle Scholar
  60. Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal‐induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365PubMedCrossRefGoogle Scholar
  61. Schwartz MW, Hoeksema JD (1998) Specialization and resource trade: biological markets as a model of mutualisms. Ecology 79:1029–1038CrossRefGoogle Scholar
  62. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  63. Smith FA, Grace EJ, Smith SE (2009) More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol 182:347–358PubMedCrossRefGoogle Scholar
  64. Smith SE, Christophersen HM, Pope S, Smith FA (2010) Arsenic uptake and toxicity in plants: integrating mycorrhizal influences. Plant Soil 327:1–21CrossRefGoogle Scholar
  65. Stahl PD, Schuman GE, Frost SM, Williams SE (1998) Arbuscular mycorrhizae and water stress tolerance of Wyoming big sagebrush seedlings. Soil Sci Soc Am J 62:1309–1313CrossRefGoogle Scholar
  66. Stout RG, Summers ML, Kerstetter T, McDermott TR (1997) Heat- and acid-tolerance of a grass commonly found in geothermal areas within Yellowstone National Park. Plant Sci 130:1–9CrossRefGoogle Scholar
  67. Sudova R, Jurkiewicz A, Turnau K, Vosátka M (2007) Persistence of heavy metal tolerance of the arbuscular mycorrhizal fungus Glomus intraradices under different cultivation regimes. Symbiosis 43:71–81Google Scholar
  68. Tiquia SM, Mormile MR (2010) Extremophiles—a source of innovation for industrial and environmental applications. Environ Technol 31:823PubMedCrossRefGoogle Scholar
  69. Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363PubMedCrossRefGoogle Scholar
  70. Waters ER (2003) Molecular adaptation and the origin of land plants. Mol Phylogenet Evol 29:456–463PubMedCrossRefGoogle Scholar
  71. Weissenhorn I, Leyval C, Belgy G, Berthelin J (1995) Arbuscular mycorrhizal contribution to heavy metal uptake by maize (Zea mays L.) in pot culture with contaminated soil. Mycorrhiza 5:245–251Google Scholar
  72. Yu XZ, Wu SC, Wu FY, Wong MH (2011) Enhanced dissipation of PAHs from soil using mycorrhizal ryegrass and PAH-degrading bacteria. J Hazard Mater 28:1206–1217CrossRefGoogle Scholar
  73. Zhu X, Song F, Xu H (2010) Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza 20:325–332PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Land Resources and Environmental SciencesMontana State UniversityBozemanUSA
  2. 2.Department of Environmental SciencesWestern Washington UniversityBellinghamUSA

Personalised recommendations