Skip to main content

A Kinetic Modeling for Radiotherapy Mechanisms with Gene-Environment Network (GEN) Framework

  • Conference paper
Life System Modeling and Simulation (ICSEE 2014, LSMS 2014)

Abstract

Radiotherapy is a comprehensive method, in which the main factor that determines success in clinical radiotherapy is radiation dose. It is necessary to make the most of mathematical theories to investigate the complicated mechanisms how P53-dependent regulation pathways govern cell survival and apoptosis at molecular level. In this work, we develop an integrated method for modeling Tumor Radiotherapy System (TRS) based on Kinetic Theory of Active Particle (KTAP) and Gene-Environment Network (GEN), and then explore the dynamics of integrated TRS through correlated subsystems, and inner mechanism of cell fate decision under radiotherapy. The inner mechanisms of radiotherapy are investigated at both molecular and systematic levels, including the stochastic kinetics of DNA damage generation and repair, switch-like Ataxia Telangiectasia Mutated (ATM) activation, oscillation of P53-Mouse Mouble Minute 2 homolog (MDM2) negative feedback loop, and outcome of tumor cell degradation and genome stability under radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Perez, C., Brady, L.: Principles and practice of radiation oncology. Journal of Pediatric Hematology/Oncology 21, 560 (1999)

    Article  Google Scholar 

  2. Karlsson, M., Weber, W.: Therapeutic synthetic gene networks. Current Opinion in Biotechnology 23, 703–711 (2012)

    Article  Google Scholar 

  3. Zhang, X.P., Liu, F., Wang, W.: Two-phase dynamics of p53 in the DNA damage response. Proceedings of the National Academy of Sciences 108, 8990–8995 (2011)

    Article  Google Scholar 

  4. Kim, J., Lee, S.-D., Chang, B., Jin, D.-H., Jung, S.-I., et al.: Enhanced antitumor activity of vitamin C via p53 in cancer cells. Free Radical Biology and Medicine 53, 1607–1615 (2012)

    Article  Google Scholar 

  5. Bellomo, N., Forni, G.: Looking for new paradigms towards a biological-mathematical theory of complex multicellular systems. Mathematical Models and Methods in Applied Sciences 16, 1001–1029 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bellouquid, A., Delitala, M.: Mathematical modeling of complex biological systems: a kinetic theory approach. Springer (2006)

    Google Scholar 

  7. Caspi, A., Moffitt, T.E.: Gene–environment interactions in psychiatry: joining forces with neuroscience. Nature Reviews Neuroscience 7, 583–590 (2006)

    Article  Google Scholar 

  8. Cercignani, C., Gabetta, E.: Transport Phenomena and Kinetic Theory. Springer (2007)

    Google Scholar 

  9. Bellomo, N., Delitala, M.: From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells. Physics of Life Reviews 5, 183–206 (2008)

    Article  Google Scholar 

  10. Bellomo, N., Forni, G.: Complex multicellular systems and immune competition: New paradigms looking for a mathematical theory. Current Topics in Developmental Biology 81, 485–502 (2008)

    Article  Google Scholar 

  11. Bertotti, M.L., Delitala, M.: Conservation laws and asymptotic behavior of a model of social dynamics. Nonlinear Analysis: Real World Applications 9, 183–196 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brazzoli, I.: From the discrete kinetic theory to modelling open systems of active particles. Applied Mathematics Letters 21, 155–160 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. De Angelis, E., Lods, B.: On the kinetic theory for active particles: A model for tumor–immune system competition. Mathematical and Computer Modelling 47, 196–209 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Qi, J., Ding, Y., Zhu, Y., Wu, Y.: Kinetic theory approach to modeling of cellular repair mechanisms under genome stress. PloS one. 6, e22228 (2011)

    Google Scholar 

  15. Yu, K., Wacholder, S., Wheeler, W., Wang, Z., Caporaso, N., et al.: A Flexible Bayesian Model for Studying Gene–Environment Interaction. PLoS Genetics 8, e1002482 (2012)

    Google Scholar 

  16. Cuddihy, A., Bristow, R.: The p53 protein family and radiation sensitivity: Yes or no? Cancer and Metastasis Reviews 23, 237–257 (2004)

    Article  Google Scholar 

  17. Ribeiro, D., Pinto, J.: An integrated network-based mechanistic model for tumor growth dynamics under drug administration. Computers in Biology and Medicine 39, 368–384 (2009)

    Article  Google Scholar 

  18. Zhang, X., Liu, F., Wang, W.: Regulation of the DNA damage response by p53 cofactors. Biophysical Journal 102, 2251–2260 (2012)

    Article  Google Scholar 

  19. Bertotti, M.L., Delitala, M.: From discrete kinetic and stochastic game theory to modelling complex systems in applied sciences. Mathematical Models and Methods in Applied Sciences 14, 1061–1084 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bellomo, N.: Modeling complex living systems: a kinetic theory and stochastic game approach. Springer (2008)

    Google Scholar 

  21. Deutsch, A., Dormann, S.: Cellular automaton modeling of biological pattern formation. University of Bielefeld, Germany Birkhäuser, Boston (2004)

    Google Scholar 

  22. Ma, L., Wagner, J., Rice, J.J., Hu, W., Levine, A.J., et al.: A plausible model for the digital response of p53 to DNA damage. Proceedings of the National Academy of Sciences of the United States of America 102, 14266–14271 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qi, JP., Qi, J., Pu, F., Zhu, Y. (2014). A Kinetic Modeling for Radiotherapy Mechanisms with Gene-Environment Network (GEN) Framework. In: Ma, S., Jia, L., Li, X., Wang, L., Zhou, H., Sun, X. (eds) Life System Modeling and Simulation. ICSEE LSMS 2014 2014. Communications in Computer and Information Science, vol 461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45283-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45283-7_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45282-0

  • Online ISBN: 978-3-662-45283-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics