Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8802))

Abstract

Monte Carlo simulations may be used to efficiently estimate critical properties of complex evolving systems but are nevertheless computationally intensive. Hence, when only part of a system is new or modified it seems wasteful to re-simulate the parts that have not changed. It also seems unnecessary to perform many simulations of parts of a system whose behaviour does not vary significantly.

To increase the efficiency of designing and testing complex evolving systems we present simulation techniques to allow such a system to be verified against behaviour-preserving statistical abstractions of its environment. We propose a frequency domain metric to judge the a priori performance of an abstraction and provide an a posteriori indicator to aid construction of abstractions optimised for critical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.: Model-checking algorithms for continuous-time markov chains. IEEE Transactions on Software Engineering 29(6), 524–541 (2003)

    Article  Google Scholar 

  2. Basu, A., Bensalem, S., Bozga, M., Caillaud, B., Delahaye, B., Legay, A.: Statistical abstraction and model-checking of large heterogeneous systems. In: Hatcliff, J., Zucca, E. (eds.) FMOODS 2010, Part II. LNCS, vol. 6117, pp. 32–46. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without bDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  4. Bortolussi, L., Sanguinetti, G.: Learning and designing stochastic processes from logical constraints. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 89–105. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.-J.: Symbolic model checking: 1020 states and beyond. Information and Computation 98(2), 142–170 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: algorithmic verification and debugging. ACM Commun. 52(11), 74–84 (2009)

    Article  Google Scholar 

  7. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Transactions on Programming Languages and Systems (TOPLAS) 16(5), 1512–1542 (1994)

    Article  Google Scholar 

  8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp. 238–252. ACM (1977)

    Google Scholar 

  9. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs. ACM Commun. 18, 453–457 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gibson, M., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. J. of Physical Chemistry A 104, 1876 (2000)

    Article  Google Scholar 

  11. Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annual Review of Physical Chemistry 58(1), 35–55 (2007)

    Article  Google Scholar 

  12. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics 22(4), 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  13. Gillespie, D.T.: A rigorous derivation of the chemical master equation. Physica A 188, 404–425 (1992)

    Article  Google Scholar 

  14. Godefroid, P.: Using partial orders to improve automatic verification methods. In: Clarke, E., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 176–185. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  15. Heath, J., et al.: Probabilistic model checking of complex biological pathways. Theoretical Computer Science 391, 239–257 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hinchey, M., Coyle, L.: Evolving critical systems. In: 2010 17th IEEE International Conference and Workshops on Engineering of Computer Based Systems (ECBS), p. 4 (March 2010)

    Google Scholar 

  17. Ihekwaba, A., Sedwards, S.: Communicating oscillatory networks: frequency domain analysis. BMC Systems Biology 5(1), 203 (2011)

    Article  Google Scholar 

  18. Jegourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model checking rare properties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 576–591. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  19. Kemeny, J.G., Knapp, A.W., Snell, J.L.: Denumerable markov chains. Springer (1976)

    Google Scholar 

  20. Okamoto, M.: Some inequalities relating to the partial sum of binomial probabilities. Annals of the Institute of Statistical Mathematics 10, 29–35 (1959)

    Article  Google Scholar 

  21. Pettitt, A.N., Stephens, M.A.: The Kolmogorov-Smirnov Goodness-of-Fit Statistic with Discrete and Grouped Data. Technometrics 19(2), 205–210 (1977)

    Article  MATH  Google Scholar 

  22. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press (2006)

    Google Scholar 

  23. Sedwards, S.: A Natural Computation Approach To Biology: Modelling Cellular Processes and Populations of Cells With Stochastic Models of P Systems. PhD thesis, University of Trento (2009)

    Google Scholar 

  24. Vilar, J.M.G., Kueh, H.Y., Barkai, N., Leibler, S.: Mechanisms of noise-resistance in genetic oscillators. Proceedings of the National Academy of Sciences 99(9), 5988–5992 (2002)

    Article  Google Scholar 

  25. Wald, A.: Sequential Tests of Statistical Hypotheses. Annals of Mathematical Statistics 16(2), 117–186 (1945)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Legay, A., Sedwards, S. (2014). Statistical Abstraction Boosts Design and Test Efficiency of Evolving Critical Systems. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Technologies for Mastering Change. ISoLA 2014. Lecture Notes in Computer Science, vol 8802. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45234-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45234-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45233-2

  • Online ISBN: 978-3-662-45234-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics