On Quantitative Software Quality Assurance Methodologies for Cardiac Pacemakers

  • Marta Kwiatkowska
  • Alexandru Mereacre
  • Nicola Paoletti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8803)

Abstract

Embedded software is at the heart of implantable medical devices such as cardiac pacemakers, and rigorous software design methodologies are needed to ensure their safety and reliability. This paper gives an overview of ongoing research aimed at providing software quality assurance methodologies for pacemakers. A model-based framework has been developed based on hybrid automata, which can be configured with a variety of heart and pacemaker models. The framework supports a range of quantitative verification techniques for the analysis of safety, reliability and energy usage of pacemakers. It also provides techniques for parametric analysis of personalised physiological properties that can be performed in silico, which can reduce the cost and discomfort of testing new designs on patients. We describe the framework, summarise the results obtained, and identify future research directions in this area.

Keywords

model-based design quantitative verification hybrid automata heart modelling cardiac pacemakers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Barold, S.S., Stroobandt, R.X., Sinnaeve, A.F.: Cardiac pacemakers and resynchronization step by step: An illustrated guide. John Wiley & Sons (2010)Google Scholar
  3. 3.
    Bueno-Orovio, A., Cherry, E.M., Fenton, F.H.: Minimal model for human ventricular action potentials in tissue. Journal of Theoretical Biology 253(3), 544–560 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen, T., Diciolla, M., Kwiatkowska, M., Mereacre, A.: Quantitative verification of implantable cardiac pacemakers. In: 2012 IEEE 33rd Real-Time Systems Symposium (RTSS), pp. 263–272. IEEE (2012)Google Scholar
  5. 5.
    Chen, T., Diciolla, M., Kwiatkowska, M., Mereacre, A.: A simulink hybrid heart model for quantitative verification of cardiac pacemakers. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control (HSCC 2013), pp. 131–136 (2013)Google Scholar
  6. 6.
    Chen, T., Diciolla, M., Kwiatkowska, M., Mereacre, A.: Quantitative verification of implantable cardiac pacemakers over hybrid heart models. Information and Computation (in press, 2014)Google Scholar
  7. 7.
    Chen, T., Diciolla, M., Kwiatkowska, M.Z., Mereacre, A.: Verification of linear duration properties over continuous-time markov chains. ACM Trans. Comput. Log. 14(4), 33 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Clifford, G., Nemati, S., Sameni, R.: An Artificial Vector Model for Generating Abnormal Electrocardiographic Rhythms. Physiological Measurements 31(5), 595–609 (2010)CrossRefGoogle Scholar
  9. 9.
    Diciolla, M.: Quantitative Verification of Real-Time Properties with Application to Medical Devices. PhD thesis, Department of Computer Science. University of Oxford (2014)Google Scholar
  10. 10.
    Gomes, A.O., Oliveira, M.V.M.: Formal specification of a cardiac pacing system. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 692–707. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Greenhut, S., Jenkins, J., MacDonald, R.: A stochastic network model of the interaction between cardiac rhythm and artificial pacemaker. IEEE Transactions on Biomedical Engineering 40(9), 845–858 (1993)CrossRefGoogle Scholar
  12. 12.
    Gritzali, F., Frangakis, G., Papakonstantinou, G.: Detection of the P and T waves in an ECG. Computers and Biomedical Research 22(1), 83–91 (1989)CrossRefGoogle Scholar
  13. 13.
    Grosu, R., Batt, G., Fenton, F.H., Glimm, J., Le Guernic, C., Smolka, S.A., Bartocci, E.: From cardiac cells to genetic regulatory networks. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Guevara, M.R., Ward, G., Shrier, A., Glass, L.: Electrical alternans and period-doubling bifurcations. Computers in Cardiology, 167–170 (1984)Google Scholar
  15. 15.
    Huang, Z., Fan, C., Mereacre, A., Mitra, S., Kwiatkowska, M.: Invariant verification of nonlinear hybrid automata networks of cardiac cells. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 373–390. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  16. 16.
    Jiang, Z., Pajic, M., Connolly, A., Dixit, S., Mangharam, R.: Real-time heart model for implantable cardiac device validation and verification. In: ECRTS, pp. 239–248 (2010)Google Scholar
  17. 17.
    Jiang, Z., Pajic, M., Moarref, S., Alur, R., Mangharam, R.: Modeling and verification of a dual chamber implantable pacemaker. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 188–203. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Kwiatkowska, M., Lea-Banks, H., Mereacre, A., Paoletti, N.: Formal modelling and validation of rate-adaptive pacemakers. In: IEEE International Conference on Healthcare Informatics 2014, ICHI 2014 (to appear, 2014)Google Scholar
  19. 19.
    Lian, J., Krätschmer, H., Müssig, D., Stotts, L.: Open source modeling of heart rhythm and cardiac pacing. Open Pacing Electrophysiol. Ther. J. 3, 4 (2010)Google Scholar
  20. 20.
    Lynch, N., Segala, R., Vaandrager, F., Weinberg, H.B.: Hybrid I/O automata. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 496–510. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  21. 21.
    Macedo, H.D., Larsen, P.G., Fitzgerald, J.: Incremental Development of a Distributed Real-Time Model of a Cardiac Pacing System Using VDM. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 181–197. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Manwell, J.F., McGowan, J.G.: Lead acid battery storage model for hybrid energy systems. Solar Energy 50(5), 399–405 (1993)CrossRefGoogle Scholar
  23. 23.
    McSharry, P.E., Clifford, G.D., Tarassenko, L., Smith, L.A.: A dynamical model for generating synthetic electrocardiogram signals. IEEE Transactions on Biomedical Engineering 50(3), 289–294 (2003)CrossRefGoogle Scholar
  24. 24.
    Méry, D., Singh, N.K.: Pacemaker’s Functional Behaviors in Event-B. Rapport de recherche, MOSEL - INRIA Lorraine - LORIA (2009)Google Scholar
  25. 25.
    Tuan, L.A., Zheng, M.C., Tho, Q.T.: Modeling and verification of safety critical systems: A case study on pacemaker. In: 2010 Fourth International Conference on Secure Software Integration and Reliability Improvement (SSIRI), pp. 23–32. IEEE (2010)Google Scholar
  26. 26.
    Ye, P., Entcheva, E., Grosu, R., Smolka, S.A.: Efficient modeling of excitable cells using hybrid automata. In: Proc. of CMSB, vol. 5, pp. 216–227 (2005)Google Scholar
  27. 27.
    Yeh, Y.C., Wang, W.J.: QRS complexes detection for ECG signal: The Difference Operation Method. Computer Methods and Programs in Biomedicine 91(3), 245–254 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Marta Kwiatkowska
    • 1
  • Alexandru Mereacre
    • 1
  • Nicola Paoletti
    • 1
  1. 1.Department of Computer ScienceUniversity of OxfordUK

Personalised recommendations