Nuclear Medicine Imaging in Neuroendocrine Tumors

  • Andreas KjaerEmail author


Nuclear medicine imaging is key in the initial diagnostic workup and used for staging and restaging. Also it forms basis for planning of therapy targeting somatostatin receptors, either as somatostatin analogues or peptide receptor radionuclide therapy (PRRT). For decades somatostatin receptor scintigraphy has successfully been performed using gamma camera technique and SPECT with the tracer 111In-DTPA-octreotide. Recently, several positron emission tomography (PET) tracers targeting the somatostatin receptors have been introduced. The most commonly used of these are 68Ga-DOTATATE, 68Ga-DOTATOC, and 68Ga-DOTANOC. They all perform superior to SPECT and should replace gamma camera tracers whenever possible. With FDG-PET it is possible to detect a large proportion of the somatostatin receptor-negative cases, and FDG-PET therefore seems to be a valuable addition. Furthermore, FDG-PET has prognostic information that potentially may be used in selection of therapy. With the abovementioned PET tracers available, the need for 123I-MIBG, 18F-DOPA, and 11C-5-HTP may be limited.


Somatostatin receptor imaging PET imaging SPECT imaging Neuroendocrine tumors Cancer Molecular imaging 68Ga-DOTATOC 68Ga-DOTATATE 68Ga-DOTANOC 64Cu-DOTATATE 18F-DOPA 11C-5-HTP 123I-MIBG 131I-MIBG FDG 


  1. 1.
    Kjaer A (2006) Molecular imaging of cancer using PET and SPECT. Adv Exp Med Biol 587:277–284PubMedGoogle Scholar
  2. 2.
    Hamilton SR, Aaltonen LA, World Health Organization (2000) Pathology and genetics. Tumours of the digestive system, WHO classification of tumors. IARC, LyonGoogle Scholar
  3. 3.
    Binderup T, Knigge U, Mellon Mogensen A et al (2008) Quantitative gene expression of somatostatin receptors and noradrenaline transporter underlying scintigraphic results in patients with neuroendocrine tumors. Neuroendocrinology 87:223–232CrossRefPubMedGoogle Scholar
  4. 4.
    Reubi JC, Waser B, Schaer JC, Laissue JA (2001) Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur J Nucl Med 28:836–846CrossRefPubMedGoogle Scholar
  5. 5.
    Krenning EP, Kwekkeboom DJ, Bakker WH et al (1993) Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 20:716–731CrossRefPubMedGoogle Scholar
  6. 6.
    Öberg K, Knigge U, Kwekkeboom D, Perren A (2012) Neuroendocrine gastro-entero-pancreatic tumors: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 23(Suppl 7):vii124–30Google Scholar
  7. 7.
    Jamar F, Fiasse R, Leners N, Pauwels S (1995) Somatostatin receptor imaging with indium-111-pentetreotide in gastroenteropancreatic neuroendocrine tumors: safety, efficacy and impact on patient management. J Nucl Med 36:542–549PubMedGoogle Scholar
  8. 8.
    Raderer M, Kurtaran A, Leimer M et al (2000) Value of peptide receptor scintigraphy using (123)I-vasoactive intestinal peptide and (111)In-DTPA-D-Phe1-octreotide in 194 carcinoid patients: Vienna University Experience, 1993 to 1998. J Clin Oncol 18:1331–1336PubMedGoogle Scholar
  9. 9.
    Koopmans KP, Neels ON, Kema IP et al (2009) Molecular imaging in neuroendocrine tumors: molecular uptake mechanisms and clinical results. Crit Rev Oncol Hematol 71:199–213CrossRefPubMedGoogle Scholar
  10. 10.
    Lu S-J, Gnanasegaran G, Buscombe J, Navalkissoor S (2013) Single photon emission computed tomography/computed tomography in the evaluation of neuroendocrine tumours: a review of the literature. Nucl Med Commun 34:98–107CrossRefPubMedGoogle Scholar
  11. 11.
    Bombardieri E, Ambrosini V, Aktolun C et al (2010) 111In-pentetreotide scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 37:1441–1448CrossRefPubMedGoogle Scholar
  12. 12.
    Binderup T, Knigge U, Loft A et al (2010) Functional imaging of neuroendocrine tumors: a head-to-head comparison of somatostatin receptor scintigraphy, 123I-MIBG scintigraphy, and 18F-FDG PET. J Nucl Med 51:704–712CrossRefPubMedGoogle Scholar
  13. 13.
    Gabriel M, Muehllechner P, Decristoforo C et al (2005) 99mTc-EDDA/HYNIC-Tyr(3)-octreotide for staging and follow-up of patients with neuroendocrine gastro-entero-pancreatic tumors. Q J Nucl Med Mol Imaging 49:237–244PubMedGoogle Scholar
  14. 14.
    Hubalewska-Dydejczyk A, Fröss-Baron K, Mikołajczak R et al (2006) 99mTc-EDDA/HYNIC-octreotate scintigraphy, an efficient method for the detection and staging of carcinoid tumours: results of 3 years’ experience. Eur J Nucl Med Mol Imaging 33:1123–1133CrossRefPubMedGoogle Scholar
  15. 15.
    Reubi JC, Schär JC, Waser B et al (2000) Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 27:273–282CrossRefPubMedGoogle Scholar
  16. 16.
    Antunes P, Ginj M, Zhang H et al (2007) Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging 34:982–993CrossRefPubMedGoogle Scholar
  17. 17.
    Johnbeck CB, Knigge U, Kjaer A (2014) Somatostatin receptor imaging with PET tracers of neuroendocrine tumors: current status and review of the literature. Future Oncol 10:2259–2277CrossRefPubMedGoogle Scholar
  18. 18.
    Kayani I, Bomanji JB, Groves A et al (2008) Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga-DOTATATE (DOTA-DPhe1, Tyr3-octreotate) and 18F-FDG. Cancer 112:2447–2455CrossRefPubMedGoogle Scholar
  19. 19.
    Kayani I, Conry BG, Groves AM et al (2009) A comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. J Nucl Med 50:1927–1932CrossRefPubMedGoogle Scholar
  20. 20.
    Haug A, Auernhammer CJ, Wängler B et al (2009) Intraindividual comparison of 68Ga-DOTA-TATE and 18F-DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging 36:765–770CrossRefPubMedGoogle Scholar
  21. 21.
    Kabasakal L, Demirci E, Ocak M et al (2012) Comparison of 68Ga-DOTATATE and 68Ga-DOTANOC PET/CT imaging in the same patient group with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 39:1271–1277CrossRefPubMedGoogle Scholar
  22. 22.
    Wild D, Bomanji JB, Benkert P et al (2013) Comparison of 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT within patients with gastroenteropancreatic neuroendocrine tumors. J Nucl Med 54:364–372CrossRefPubMedGoogle Scholar
  23. 23.
    Hofmann M, Maecke H, Börner R, Weckesser E, Schöffski P, Oei L, Schumacher J, Henze M, Heppeler A, Meyer J, Knapp H (2001) Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data. Eur J Nucl Med 28:1751–1757CrossRefPubMedGoogle Scholar
  24. 24.
    Koukouraki S, Strauss LG, Georgoulias V et al (2006) Evaluation of the pharmacokinetics of 68Ga-DOTATOC in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC therapy. Eur J Nucl Med Mol Imaging 33:460–466CrossRefPubMedGoogle Scholar
  25. 25.
    Buchmann I, Henze M, Engelbrecht S et al (2007) Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 34:1617–1626CrossRefPubMedGoogle Scholar
  26. 26.
    Gabriel M, Decristoforo C, Kendler D et al (2007) 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48:508–518CrossRefPubMedGoogle Scholar
  27. 27.
    Putzer D, Gabriel M, Henninger B et al (2009) Bone metastases in patients with neuroendocrine tumor: 68Ga-DOTA-Tyr3-octreotide PET in comparison to CT and bone scintigraphy. J Nucl Med 50:1214–1221CrossRefPubMedGoogle Scholar
  28. 28.
    Versari A, Camellini L, Carlinfante G, Frasoldati A, Nicoli F, Grassi E, Gallo C, Giunta FP, Fraternali A, Salvo D, Asti M, Azzolini F, Iori V, Sassatelli R (2010) Ga-68 DOTATOC PET, endoscopic ultrasonography, and multidetector CT in the diagnosis of duodenopancreatic neuroendocrine tumors: a single-centre retrospective study. Clin Nucl Med 35:321–328CrossRefPubMedGoogle Scholar
  29. 29.
    Ambrosini V, Tomassetti P, Castellucci P et al (2008) Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging 35:1431–1438CrossRefPubMedGoogle Scholar
  30. 30.
    Ambrosini V, Castellucci P, Rubello D, Nanni C, Musto A, Allegri V, Montini GC, Mattioli S, Grassetto G, Al-Nahhas A, Franchi R, Fanti S (2009) 68Ga-DOTA-NOC: a new PET tracer for evaluating patients with bronchial carcinoid. Nucl Med Commun 30:281–286CrossRefPubMedGoogle Scholar
  31. 31.
    Naswa N, Sharma P, Kumar A, Nazar AH, Kumar R, Chumber S, Bal C (2011) Gallium-68-DOTA-NOC PET/CT of patients with gastroenteropancreatic neuroendocrine tumors: a prospective single-center study. AJR Am J Roentgenol 197:1221–1228CrossRefPubMedGoogle Scholar
  32. 32.
    Krausz Y, Freedman N, Rubinstein R et al (2011) 68Ga-DOTA-NOC PET/CT imaging of neuroendocrine tumors: comparison with 111In-DTPA-octreotide (OctreoScan®). Mol Imaging Biol 13:583–593CrossRefPubMedGoogle Scholar
  33. 33.
    Naswa N, Sharma P, Soundararajan R, Karunanithi S, Nazar AH, Kumar R, Malhotra A, Bal C (2013) Diagnostic performance of somatostatin receptor PET/CT using 68Ga-DOTANOC in gastrinoma patients with negative or equivocal CT findings. Abdom Imaging 38:552–560CrossRefPubMedGoogle Scholar
  34. 34.
    Ambrosini V, Campana D, Tomassetti P, Fanti S (2012) 68Ga-labelled peptides for diagnosis of gastroenteropancreatic NET. Eur J Nucl Med Mol Imaging 39(Suppl 1):S52–S60CrossRefPubMedGoogle Scholar
  35. 35.
    Poeppel TD, Binse I, Petersenn S et al (2011) 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med 52:1864–1870CrossRefPubMedGoogle Scholar
  36. 36.
    Putzer D, Kroiss A, Waitz D et al (2013) Somatostatin receptor PET in neuroendocrine tumours: 68Ga-DOTA0, Tyr3-octreotide versus 68Ga-DOTA0-lanreotide. Eur J Nucl Med Mol Imaging 40:364–372CrossRefPubMedGoogle Scholar
  37. 37.
    Demirci E, Ocak M, Kabasakal L et al (2013) Comparison of Ga-68 DOTA-TATE and Ga-68 DOTA-LAN PET/CT imaging in the same patient group with neuroendocrine tumours: preliminary results. Nucl Med Commun 34:727–732CrossRefPubMedGoogle Scholar
  38. 38.
    Pfeifer A, Knigge U, Mortensen J et al (2012) Clinical PET of neuroendocrine tumors using 64Cu-DOTATATE: first-in-humans study. J Nucl Med 53:1207–1215CrossRefPubMedGoogle Scholar
  39. 39.
    Pfeifer A, Johnbeck CB, Knigge U et al (2013) Clinical PET imaging of neuroendocrine tumors using 64Cu-DOTA-Tyr3-octreotate. J Nucl Med 54:1854Google Scholar
  40. 40.
    Putzer D, Gabriel M, Kendler D et al (2010) Comparison of (68)Ga-DOTA-Tyr(3)-octreotide and (18)F-fluoro-L-dihydroxyphenylalanine positron emission tomography in neuroendocrine tumor patients. Q J Nucl Med Mol Imaging 54:68–75PubMedGoogle Scholar
  41. 41.
    Orlefors H, Sundin A, Ahlström H et al (1998) Positron emission tomography with 5-hydroxytryprophan in neuroendocrine tumors. J Clin Oncol 16:2534–2541PubMedGoogle Scholar
  42. 42.
    Orlefors H, Sundin A, Garske U et al (2005) Whole-body (11)C-5-hydroxytryptophan positron emission tomography as a universal imaging technique for neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and computed tomography. J Clin Endocrinol Metab 90:3392–3400CrossRefPubMedGoogle Scholar
  43. 43.
    Koopmans KP, Neels OC, Kema IP et al (2008) Improved staging of patients with carcinoid and islet cell tumors with 18F-dihydroxy-phenyl-alanine and 11C-5-hydroxy-tryptophan positron emission tomography. J Clin Oncol 26:1489–1495CrossRefPubMedGoogle Scholar
  44. 44.
    Gutte H, Hansen AE, Henriksen ST, Johannesen HH et al (2015) Simultaneous hyperpolarized 13C-pyruvate MRI and 18F-FDG-PET in cancer (hyperPET): feasibility of a new imaging concept using a clinical PET/MRI scanner. Am J Nucl Med Mol Imaging 5:38–45Google Scholar
  45. 45.
    Binderup T, Knigge U, Loft A et al (2010) 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin Cancer Res 16:978–985CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, RigshospitaletUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations