Advertisement

Peptide Receptor Radionuclide Therapy

  • Murat Fani BozkurtEmail author

Abstract

Peptide receptor radionuclide therapy (PRRT) is an internal radiation therapy which is based on specific binding of therapeutic radiopharmaceutical to somatostatin receptor (mostly sstr2) and internalization of receptor-radiopharmaceutical complex to exert radiation damage to neuroendocrine tumour cells. Although all kinds of tumours which have overexpression of somatostatin receptors are theoretically candidates for PRRT, it provides more successful results for gastroenteropancreatic and bronchial neuroendocrine tumours followed by some neuroectodermal tumours such as paraganglioma and some other tumours like thyroid medullary carcinoma or undifferentiated thyroid cancer with sstr2 overexpression. 90Y-DOTATOC and 177Lu-DOTATATE are currently the mostly preferred radiopharmaceuticals for PRRT. PRRT is administered in 2–6 cycles of therapies, depending on the radiopharmaceutical used and on the clinical status of the patient. The dose-limiting organ for PRRT is the kidneys followed by the bone marrow. The patient should be assessed for an adequate renal function and bone marrow reserve in pretherapy setting. Renal toxicity can be reduced and avoided by kidney protecting amino acid solution infusions, which are administered just before PRRT. 90Y-DOTATOC usually causes more renal and bone marrow toxicity in comparison with 177Lu-DOTATATE. Therefore, 177Lu-DOTATATE should be the choice of radiopharmaceutical in case of compromised patients. PRRT with 90Y-DOTATOC and 177Lu-DOTATATE has been practised for about a decade, and studies have so far concluded mostly partial and complete objective response rates in approximately 30 % of patients without any serious side effects and severe toxicity when applied properly.

Keywords

Neuroendocrine Tumour Medullary Thyroid Carcinoma Medullary Thyroid Cancer Peptide Receptor Radionuclide Therapy Bone Marrow Toxicity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Valkema R, De Jong M, Bakker WH et al (2002) Phase I study of peptide receptor radionuclide therapy with [In-DTPA]octreotide: the Rotterdam experience. Semin Nucl Med 32(2):110–122CrossRefPubMedGoogle Scholar
  2. 2.
    Bodei L, Ferone D, Grana CM et al (2009) Peptide receptor therapies in neuroendocrine tumors. J Endocrinol Invest 32(4):360–369CrossRefPubMedGoogle Scholar
  3. 3.
    Kwekkeboom DJ, de Herder WW, van Eijck CH et al (2010) Peptide receptor radionuclide therapy in patients with gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med 40(2):78–88CrossRefPubMedGoogle Scholar
  4. 4.
    De Jong M, Valkema R, Jamar F et al (2002) Somatostatin receptor-targeted radionuclide therapy of tumors: preclinical and clinical findings. Semin Nucl Med 32(2):133–140CrossRefPubMedGoogle Scholar
  5. 5.
    Bodei L, Cremonesi M, Ferrari M et al (2008) Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: the role of associated risk factors. Eur J Nucl Med Mol Imaging 35(10):1847–1856CrossRefPubMedGoogle Scholar
  6. 6.
    Rolleman EJ, Valkema R, de Jong M, Kooij PP, Krenning EP (2003) Safe and effective inhibition of renal uptake of radiolabelled octreotide by a combination of lysine and arginine. Eur J Nucl Med Mol Imaging 30(1):9–15CrossRefPubMedGoogle Scholar
  7. 7.
    Schmidt M, Baum RP, Simon T, Howman-Giles R (2010) Therapeutic nuclear medicine in pediatric malignancy. Q J Nucl Med Mol Imaging 54(4):411–428PubMedGoogle Scholar
  8. 8.
    van Essen M, Krenning EP, Bakker WH, de Herder WW, van Aken MO, Kwekkeboom DJ (2007) Peptide receptor radionuclide therapy with 177Lu-octreotate in patients with foregut carcinoid tumours of bronchial, gastric and thymic origin. Eur J Nucl Med Mol Imaging 34(8):1219–1227CrossRefPubMedGoogle Scholar
  9. 9.
    Iten F, Muller B, Schindler C et al (2009) [(90)Yttrium-DOTA]-TOC response is associated with survival benefit in iodine-refractory thyroid cancer: long-term results of a phase 2 clinical trial. Cancer 115(10):2052–2062CrossRefPubMedGoogle Scholar
  10. 10.
    Kwekkeboom DJ, Kam BL, van Essen M et al (2010) Somatostatin-receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer 17(1):R53–R73CrossRefPubMedGoogle Scholar
  11. 11.
    Bodei L, Handkiewicz-Junak D, Grana C et al (2004) Receptor radionuclide therapy with 90Y-DOTATOC in patients with medullary thyroid carcinomas. Cancer Biother Radiopharm 19(1):65–71CrossRefPubMedGoogle Scholar
  12. 12.
    Bartolomei M, Bodei L, De Cicco C, Grana CM, Cremonesi M, Botteri E, Baio SM, Aricò D, Sansovini M, Paganelli G (2009) Peptide receptor radionuclide therapy with (90)Y-DOTATOC in recurrent meningioma. Eur J Nucl Med Mol Imaging 36(9):1407–1416CrossRefPubMedGoogle Scholar
  13. 13.
    Kwekkeboom DJ, de Herder WW, Kam BL, van Eijck CH, van Essen M, Kooij PP, Feelders RA, van Aken MO, Krenning EP (2008) Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0, Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol 26(13):2124–2130CrossRefPubMedGoogle Scholar
  14. 14.
    Imhof A, Brunner P, Marincek N, Briel M, Schindler C, Rasch H, Mäcke HR, Rochlitz C, Müller-Brand J, Walter MA (2011) Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J Clin Oncol 29(17):2416–2423CrossRefPubMedGoogle Scholar
  15. 15.
    Iten F, Müller B, Schindler C, Rochlitz C, Oertli D, Mäcke HR, Müller-Brand J, Walter MA (2007) Response to [90Yttrium-DOTA]-TOC treatment is associated with long-term survival benefit in metastasized medullary thyroid cancer: a phase II clinical trial. Clin Cancer Res 13(22):6696–6702CrossRefPubMedGoogle Scholar
  16. 16.
    Bushnell DL Jr, O’Dorisio TM, O’Dorisio MS, Menda Y, Hicks RJ, Van Cutsem E, Baulieu JL, Borson-Chazot F, Anthony L, Benson AB, Oberg K, Grossman AB, Connolly M, Bouterfa H, Li Y, Kacena KA, LaFrance N, Pauwels SA (2010) 90Y-edotreotide for metastatic carcinoid refractory to octreotide. J Clin Oncol 28(10):1652–1659CrossRefPubMedGoogle Scholar
  17. 17.
    Vegt E, de Jong M, Wetzels JF, Masereeuw R, Melis M, Oyen WJ, Gotthardt M, Boerman OC (2010) Renal toxicity of radiolabeled peptides and antibody fragments: mechanisms, impact on radionuclide therapy, and strategies for prevention. J Nucl Med 51(7):1049–1058CrossRefPubMedGoogle Scholar
  18. 18.
    Valkema R, Pauwels SA, Kvols LK, Kwekkeboom DJ, Jamar F, de Jong M, Barone R, Walrand S, Kooij PP, Bakker WH, Lasher J, Krenning EP (2005) Long-term follow-up of renal function after peptide receptor radiation therapy with (90)Y-DOTA(0), Tyr(3)-octreotide and (177)Lu-DOTA(0), Tyr(3)-octreotate. J Nucl Med 46(1):83S–91SPubMedGoogle Scholar
  19. 19.
    Kwekkeboom DJ, Mueller-Brand J, Paganelli G, Anthony LB, Pauwels S, Kvols LK, O’dorisio TM, Valkema R, Bodei L, Chinol M, Maecke HR, Krenning EP (2005) Overview of results of peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogs. J Nucl Med 46(1):62S–66SPubMedGoogle Scholar
  20. 20.
    Kwekkeboom DJ, Teunissen JJ, Bakker WH, Kooij PP, de Herder WW, Feelders RA, van Eijck CH, Esser JP, Kam BL, Krenning EP (2005) Radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol 23(12):2754–2762CrossRefPubMedGoogle Scholar
  21. 21.
    Teunissen JJ, Krenning EP, de Jong FH, de Rijke YB, Feelders RA, van Aken MO, de Herder WW, Kwekkeboom DJ (2009) Effects of therapy with [177Lu-DOTA 0, Tyr 3]octreotate on endocrine function. Eur J Nucl Med Mol Imaging 36(11):1758–1766CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Nuclear Medicine, Faculty of MedicineHacettepe UniversityAnkaraTurkey

Personalised recommendations