Microorganisms in Biorefineries pp 157-181

Part of the Microbiology Monographs book series (MICROMONO, volume 26) | Cite as

Microorganisms for Biorefining of Green Biomass

  • Mette Hedegaard Thomsen
  • Ayah Alassali
  • Iwona Cybulska
  • Ahmed F. Yousef
  • Jonathan Jed Brown
  • Margrethe Andersen
  • Alexander Ratkov
  • Pauli Kiel
Chapter

Abstract

Traditional green crops such as grass, clover, alfalfa as well as new (halophytic) green biomass of Salicornia have great potential to be utilised in the concept of the green biorefinery, where the first step is a wet fractionation of the biomass to yield a sugar- and protein-rich juice and a lignocellulosic pulp fraction.

An array of industrially important microorganisms is needed in order to efficiently convert green biomass into useful products such as lactic acid, l-lysine and ethanol using the concept of green biorefining. The first—and vital microorganism used—is lactic acid bacteria, which has the ability to quickly acidify the easy perishable juice fraction and convert it into a storable nutrient-rich medium, e.g. l-lysine fermentation. The acidification also leads to precipitation of the “leaf” protein of the juice which allows for separation of this fraction to yield a value-added protein product. The resulting brown juice can be used as medium for l-lysine fermentation, e.g. using Corynebacterium glutamicum. The pulp fraction which is primarily lignocellulose is suggested as a good substrate for ethanol fermentation after physicochemical pretreatment and enzymatic hydrolysis. The most important microbes, given the current state of green biorefining, have been identified in this book chapter as Lactobacillus salivarius, Corynebacterium glutamicum and Saccharomyces cerevisiae.

References

  1. Abideen Z, Ansari R, Khan MA (2011) Halophytes: potential source of ligno-cellulosic biomass for ethanol production. Biomass Bioenergy 35(5):1818–1822. doi:10.1016/j.biombioe.2011.01.023 CrossRefGoogle Scholar
  2. Akbar E, Yaakob Z, Kamarudin SK, Ismail M, Salimon J (2009) Characteristic and composition of Jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock feedstock. Eur J Sci Res 29(3):396–403Google Scholar
  3. Almeida JRM, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82(4):340–349. doi:10.1002/jctb.1676 CrossRefGoogle Scholar
  4. Anasontzis GE, Zerva A, Stathopoulou PM, Haralampidis K, Diallinas G, Karagouni AD, Hatzinikolaou DG (2011) Homologous overexpression of xylanase in Fusarium oxysporum increases ethanol productivity during consolidated bioprocessing (CBP) of lignocellulosics. J Biotechnol 152(1):16–23PubMedCrossRefGoogle Scholar
  5. Andersen M, Kiel P (1999) Method for treating organic waste materials. Eur Pat Appl WO 00/56912Google Scholar
  6. Andersen M, Kiel P (2000) Integrated utilisation of green biomass in the green biorefinery. Ind Crop Prod 11(2–3):129–137. doi:10.1016/S0926-6690(99)00055-2 CrossRefGoogle Scholar
  7. Balat M (2011) Potential alternatives to edible oils for biodiesel production – A review of current work. Energy Convers Manag 52(2):1479–1492. doi:10.1016/j.enconman.2010.10.011 CrossRefGoogle Scholar
  8. Bansal N, Tewari R, Gupta JK, Soni R, Soni SK (2011) A novel strain of Aspergillus niger producing a cocktail of hydrolytic depolymerising enzymes for the production of second generation biofuels. BioResources 6(1):552–569Google Scholar
  9. Becker J, Wittmann C (2012) Bio-based production of chemicals, materials and fuels – Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol 23(4):631–640. doi:10.1016/j.copbio.2011.11.012 PubMedCrossRefGoogle Scholar
  10. Bettiga M, Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF (2009) Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microb Cell Fact 8(1):40PubMedCentralPubMedCrossRefGoogle Scholar
  11. Biggs DR, Hancock KR (2001) Fructan 2000. Trends Plant Sci 6(1):8–9. doi:10.1016/S1360-1385(00)01796-9 PubMedCrossRefGoogle Scholar
  12. Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50(1–2):131–149. doi:10.1016/S0168-1605(99)00082-3 PubMedCrossRefGoogle Scholar
  13. Cardona CA, Quintero JA, Paz IC (2010) Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour Technol 101(13):4754–4766. doi:10.1016/j.biortech.2009.10.097 PubMedCrossRefGoogle Scholar
  14. Chuck-Hernandez C, Perez-Carrillo E, Serna-Saldivar SO (2009) Production of bioethanol from steam-flaked sorghum and maize. J Cereal Sci 50(1):131–137. doi:10.1016/j.jcs.2009.04.004 CrossRefGoogle Scholar
  15. Cogan TM, Hill C (1993) Cheese starter cultures. In: Fox PF (ed) Cheese: chemistry, physics and microbiology, vol 1, 2nd edn. Chapman and Hall, London, pp 193–255Google Scholar
  16. Crespo CF, Badshah M, Alvarez MT, Mattiasson B (2012) Ethanol production by continuous fermentation of d-(+)-cellobiose, d-(+)-xylose and sugarcane bagasse hydrolysate using the thermoanaerobe Caloramator boliviensis. Bioresour Technol 103(1):186–191PubMedCrossRefGoogle Scholar
  17. Danner H, Madzingaidzo L, Holzer M, Mayrhuber L, Braun R (2000) Extraction and purification of lactic acid from silages. Bioresour Technol 75(3):181–187CrossRefGoogle Scholar
  18. Deanda K, Zhang M, Eddy C, Picataggio S (1996) Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl Environ Microbiol 62(12):4465–4470PubMedCentralPubMedGoogle Scholar
  19. Dodić S, Popov S, Dodić J, Ranković J, Zavargo Z, Jevtić Mučibabić R (2009) Bioethanol production from thick juice as intermediate of sugar beet processing. Biomass Bioenergy 33(5):822–827. doi:10.1016/j.biombioe.2009.01.002 CrossRefGoogle Scholar
  20. Doores S (1993) Organic acids. In: Organic A, Davidson PM, Branen AL (eds) Antimicrobials in foods, 2nd edn. Dekker, New YorkGoogle Scholar
  21. Driehuis F, Oude Elferink SJWH, Van Wikselaar PG (2001) Fermentation characteristics and aerobic stability of grass silage inoculated with Lactobacillus buchneri, with or without homofermentative lactic acid bacteria. Grass Forage Sci 56(4):330–343. doi:10.1046/j.1365-2494.2001.00282.x CrossRefGoogle Scholar
  22. Dunlop RH, Hammond PB (1965) d-lactic acidosis of ruminants. Ann NY Acad Sci 119(3):1109–1132. doi:10.1111/j.1749-6632.1965.tb47466.x PubMedCrossRefGoogle Scholar
  23. Fengel D, Wegener G (1983) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, New YorkCrossRefGoogle Scholar
  24. Foussard JN, Debellefontaine H, Besombes‐Vailhé J (1989) Efficient elimination of organic liquid wastes: wet air oxidation. J Environ Eng 115(2):367–385. doi:10.1061/(asce)0733-9372(1989)115:2(367 CrossRefGoogle Scholar
  25. Glenn EP, O’Leary JW, Watson MC et al (1991) Salicornia bigelovii Torr.: an oilseed halophyte for seawater irrigation. Science 251(4997):1065–1065PubMedCrossRefGoogle Scholar
  26. Golias H, Dumsday GJ, Stanley GA, Pamment NB (2002) Evaluation of a recombinant Klebsiella oxytoca strain for ethanol production from cellulose by simultaneous saccharification and fermentation: comparison with native cellobiose-utilising yeast strains and performance in co-culture with thermotolerant yeast and. Zymomonas mobilisJ Biotechnol 96(2):155–168Google Scholar
  27. Hansen EB (2002) Commercial bacterial starter cultures for fermented foods of the future. Int J Food Microbiol 78(1):119–131PubMedCrossRefGoogle Scholar
  28. Holzer M, Mayrhuber E, Danner H, Braun R (2003) The role of Lactobacillus buchneri in forage preservation. Trends Biotechnol 21(6):282–287. doi:10.1016/S0167-7799(03)00106-9 PubMedCrossRefGoogle Scholar
  29. Isern NG, Xue J, Rao JV, Cort JR, Ahring BK (2013) Novel monosaccharide fermentation products in Caldicellulosiruptor saccharolyticus identified using NMR spectroscopy. Biotechnol Biofuel 6(1):47CrossRefGoogle Scholar
  30. Iwasaki K, Kikuchi H, Miyatake S-I, Aoki T, Yamasaki T, Oda Y (1990) Infiltrative and cytolytic activities of lymphokine-activated killer cells against a human glioma spheroid model. Cancer Res 50(8):2429–2436PubMedGoogle Scholar
  31. Jeon B, Seo H, Yun A, Lee I, Park D (2010) Effect of glasswort (Salicornia herbacea L.) on nuruk-making process and makgeolli quality. Food Sci Biotechnol 19(4):999–1004. doi:10.1007/s10068-010-0140-9 CrossRefGoogle Scholar
  32. Joglekar HG, Rahman I, Babu S, Kulkarni BD, Joshi A (2006) Comparative assessment of downstream processing options for lactic acid. Sep Purif Technol 52(1):1–17. doi:10.1016/j.seppur.2006.03.015 CrossRefGoogle Scholar
  33. Johansson B, Hahn‐Hägerdal B (2002) The non‐oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Res 2(3):277–282PubMedGoogle Scholar
  34. Johnston S, Prakash R, Chen N, Kumagai M, Turano H, Cooney J, Schröder R (2013) An enzyme activity capable of endotransglycosylation of heteroxylan polysaccharides is present in plant primary cell walls. Planta 237(1):173–187. doi:10.1007/s00425-012-1766-z PubMedCrossRefGoogle Scholar
  35. Kadam K, Chin C, Brown L (2008) Flexible biorefinery for producing fermentation sugars, lignin and pulp from corn stover. J Ind Microbiol Biotechnol 35(5):331–341. doi:10.1007/s10295-008-0322-0 PubMedCrossRefGoogle Scholar
  36. Kamm B, Kamm M (2004) Principles of biorefineries, vol 64. Springer, BerlinGoogle Scholar
  37. Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 100(9):2562–2568. doi:10.1016/j.biortech.2008.11.011 PubMedCrossRefGoogle Scholar
  38. Kaplan H, Hutkins RW (2003) Metabolism of fructooligosaccharides by Lactobacillus paracasei 1195. Appl Environ Microbiol 69(4):2217–2222PubMedCentralPubMedCrossRefGoogle Scholar
  39. Karimi K, Emtiaziand G, Taherzadeh MJ (2006) Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme Microb Technol 40(1):138–144CrossRefGoogle Scholar
  40. Kerfai S, Fernández A, Mathé S, Alfenore S, Arlabosse P (2011) Production of green juice with an intensive thermo-mechanical fractionation process. Part II: effect of processing conditions on the liquid fraction properties. Chem Eng J 167(1):132–139. doi:10.1016/j.cej.2010.12.011 CrossRefGoogle Scholar
  41. Kim B-C, Grote R, Lee D-W, Antranikian G, Pyun Y-R (2001) Thermoanaerobacter yonseiensis sp. nov., a novel extremely thermophilic, xylose-utilizing bacterium that grows at up to 85 °C. Int J Syst Evol Microbiol 51(4):1539–1548PubMedGoogle Scholar
  42. Kiss RD, Stephanopoulos G (1992) Metabolic characterization of a L-lysine-producing strain by continuous culture. Biotechnol Bioeng 39(5):565–574. doi:10.1002/bit.260390512 PubMedCrossRefGoogle Scholar
  43. Klinke HB, Ahring BK, Schmidt AS, Thomsen AB (2002) Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresour Technol 82(1):15–26. doi:10.1016/s0960-8524(01)00152-3 PubMedCrossRefGoogle Scholar
  44. Kumar S, Singh SP, Mishra IM, Adhikari DK (2009) Ethanol and xylitol production from glucose and xylose at high temperature by Kluyveromyces sp. IIPE453. J Ind Microbiol Biotechnol 36(12):1483–1489PubMedCrossRefGoogle Scholar
  45. Kurtzman C, Dien B (1998) Candida arabinofermentans, a new L-arabinose fermenting yeast. Antonie Van Leeuwenhoek 74(4):237–243PubMedCrossRefGoogle Scholar
  46. Lachke A (2002) Biofuel from D-xylose—the second most abundant sugar. Resonance 7(5):50–58CrossRefGoogle Scholar
  47. Li Z, Xiao H, Jiang W, Jiang Y, Yang S (2013) Improvement of solvent production from xylose mother liquor by engineering the xylose metabolic pathway in Clostridium acetobutylicum EA 2018. Appl Biochem Biotechnol 171(3):555–568. doi:10.1007/s12010-013-0414-9 PubMedCrossRefGoogle Scholar
  48. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69(6):627–642PubMedCrossRefGoogle Scholar
  49. Lindgren SE, Dobrogosz WJ (1990) Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol Lett 87(1–2):149–163. doi:10.1016/0378-1097(90)90703-S CrossRefGoogle Scholar
  50. Liu D, Liu D, Zeng RJ, Angelidaki I (2006) Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res 40(11):2230–2236. doi:10.1016/j.watres.2006.03.029 PubMedCrossRefGoogle Scholar
  51. Lu D, Zhang M, Wang S, Cai J, Zhou X, Zhu C (2010) Nutritional characterization and changes in quality of Salicornia bigelovii Torr. during storage. LWT-Food Sci Technol 43(3):519–524CrossRefGoogle Scholar
  52. Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science (Washington) 251(4999):1318–1323CrossRefGoogle Scholar
  53. Malça J, Freire F (2006) Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): Assessing the implications of allocation. Energy 31(15):3362–3380. doi:10.1016/j.energy.2006.03.013 CrossRefGoogle Scholar
  54. Mamlouk D, Gullo M (2013) Acetic acid bacteria: physiology and carbon sources oxidation. Indian J Microbiol 53(4):377–384. doi:10.1007/s12088-013-0414-z PubMedCrossRefGoogle Scholar
  55. Mandl MG (2010) Status of green biorefining in Europe. Biofuels Bioprod Biorefin 4(3):268–274. doi:10.1002/bbb.219 CrossRefGoogle Scholar
  56. Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84(1):37–53PubMedCrossRefGoogle Scholar
  57. Mishra VS, Mahajani VV, Joshi JB (1995) Wet air oxidation. Ind Eng Chem Res 34(1):2–48CrossRefGoogle Scholar
  58. Mohagheghi A, Evans K, Chou Y-C, Zhang M (2002) Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Appl Biochem Biotechnol 98–100(1–9):885–898. doi:10.1385/abab:98-100:1-9:885 PubMedCrossRefGoogle Scholar
  59. Morlon-Guyot J, Guyot J, Pot B, De Haut IJ, Raimbault M (1998) Lactobacillus manihotivorans sp. nov., a new starch-hydrolysing lactic acid bacterium isolated during cassava sour starch fermentation. Int J Syst Bacteriol 48(4):1101–1109PubMedCrossRefGoogle Scholar
  60. Muck R (1993) The role of silage additives in making high quality silage. Paper presented at the Silage production from seed to animal. Proceedings of the national silage production conference, Syracuse, New York, FebGoogle Scholar
  61. Müller M, Lier D (1994) Fermentation of fructans by epiphytic lactic acid bacteria. J Appl Bacteriol 76(4):406–411. doi:10.1111/j.1365-2672.1994.tb01647.x PubMedCrossRefGoogle Scholar
  62. Neuner A, Heinzle E (2011) Mixed glucose and lactate uptake by Corynebacterium glutamicum through metabolic engineering. Biotechnol J 6(3):318–329PubMedCrossRefGoogle Scholar
  63. Neuner A, Wagner I, Sieker T, Ulber R, Schneider K, Peifer S, Heinzle E (2013) Production of l-lysine on different silage juices using genetically engineered Corynebacterium glutamicum. J Biotechnol 163(2):217–224. doi:10.1016/j.jbiotec.2012.07.190 PubMedCrossRefGoogle Scholar
  64. Öhgren K, Rudolf A, Galbe M, Zacchi G (2006) Fuel ethanol production from steam-pretreated corn stover using SSF at higher dry matter content. Biomass Bioenergy 30(10):863–869. doi:10.1016/j.biombioe.2006.02.002 CrossRefGoogle Scholar
  65. Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl Environ Microbiol 57(10):2810–2815PubMedCentralPubMedGoogle Scholar
  66. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates I: inhibition and detoxification. Bioresour Technol 74(1):17–24. doi:10.1016/S0960-8524(99)00160-1 CrossRefGoogle Scholar
  67. Palnitkar S, Lachke A (1990) Efficient simultaneous saccharification and fermentation of agricultural residues by Saccharomyces cerevisiae and Candida shehatae. Appl Biochem Biotechnol 26(2):151–158. doi:10.1007/bf02921531 PubMedCrossRefGoogle Scholar
  68. Pang Z-W, Liang J-J, Huang R-B (2011) Fermentation of xylose into ethanol by a new fungus strain Pestalotiopsis sp. XE-1. J Ind Microbiol Biotechnol 38(8):927–933PubMedCrossRefGoogle Scholar
  69. Paul Ross R, Morgan S, Hill C (2002) Preservation and fermentation: past, present and future. Int J Food Microbiol 79(1–2):3–16. doi:10.1016/S0168-1605(02)00174-5 PubMedCrossRefGoogle Scholar
  70. Payton MA, Hartley BS (1985) Mutants of Bacillus stearothermophilus lacking NAD-linked l-lactate dehydrogenase. FEMS Microbiol Lett 26(3):333–336Google Scholar
  71. Pimentel D, Patzek TW (2005) Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat Resour Res 14(1):65–76CrossRefGoogle Scholar
  72. Qureshi N, Saha BC, Hector RE, Hughes SR, Cotta MA (2008) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: part I—Batch fermentation. Biomass Bioenergy 32(2):168–175CrossRefGoogle Scholar
  73. Rodrussamee N, Lertwattanasakul N, Hirata K, Limtong S, Kosaka T, Yamada M (2011) Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Appl Microbiol Biotechnol 90(4):1573–1586PubMedCrossRefGoogle Scholar
  74. Ruklisha M, Jonina R, Paegle L, Petrovica G (2002) Metabolism and lysine biosynthesis control in Brevibacterium flavum: impact of stringent response in bacterial cells. In: Durieux A, Simon J (eds) Applied microbiology, vol 2. Springer, The Netherlands, pp 51–57CrossRefGoogle Scholar
  75. Saddler J, Chan M-H (1984) Conversion of pretreated lignocellulosic substrates to ethanol by Clostridium thermocellum in mono-and co-culture with Clostridium thermosaccharolyticum and Clostridium thermohydrosulphuricum. Can J Microbiol 30(2):212–220CrossRefGoogle Scholar
  76. Saha BC, Nichols NN, Cotta MA (2011) Ethanol production from wheat straw by recombinant Escherichia coli strain FBR5 at high solid loading. Bioresour Technol 102(23):10892. doi:10.1016/j.biortech.2011.09.041 PubMedCrossRefGoogle Scholar
  77. Sheorain V, Banka R, Chavan M (2000) Ethanol production from sorghum. Paper presented at the technical and institutional options for sorghum grain mold management: proceedings of an international consultationGoogle Scholar
  78. Simpson RJ, Bonnett GD (1993) Fructan exohydrolase from grasses. New Phytol 123(3):453–469CrossRefGoogle Scholar
  79. Sivagnanam K, Raghavan VG, Shah M, Hettich RL, Verberkmoes NC, Lefsrud MG (2011) Comparative shotgun proteomic analysis of Clostridium acetobutylicum from butanol fermentation using glucose and xylose. Proteome Sci 9:66PubMedCentralPubMedCrossRefGoogle Scholar
  80. Stiles ME, Holzapfel WH (1997) Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36(1):1–29. doi:10.1016/S0168-1605(96)01233-0 PubMedCrossRefGoogle Scholar
  81. Stratton RW, Wong HM, Hileman JI (2010) Life cycle greenhouse gas emissions from alternative jet fuels. PARTNER Project 28:133Google Scholar
  82. Sveinsdottir M, Sigurbjornsdottir MA, Orlygsson J (2011) Ethanol and hydrogen production with thermophilic bacteria from sugars and complex biomass, Progress in biomass and bioenergy production. In Tech, Útgefandi, pp 359–394Google Scholar
  83. Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101(13):4744–4753. doi:10.1016/j.biortech.2009.11.080 PubMedCrossRefGoogle Scholar
  84. Thomsen MH (2005) Lactic acid fermentation of brown juice in the green crop drying plant. IB2 – University of Southern DenmarkGoogle Scholar
  85. Thomsen MH, Kiel P (2008) Selection of lactic acid bacteria for acidification of brown juice (grass juice), with the aim of making a durable substrate for L-lysine fermentation. J Sci Food Agric 88(6):976–983. doi:10.1002/jsfa.3176 CrossRefGoogle Scholar
  86. Tolan JS, Finn R (1987) Fermentation of D-xylose and L-arabinose to ethanol by Erwinia chrysanthemi. Appl Environ Microbiol 53(9):2033–2038PubMedCentralPubMedGoogle Scholar
  87. Torry-Smith M, Sommer P, Ahring BK (2003) Purification of bioethanol effluent in an UASB reactor system with simultaneous biogas formation. Biotechnol Bioeng 84(1):7–12. doi:10.1002/bit.10734 PubMedCrossRefGoogle Scholar
  88. Treuber M (1996) Lactic acid bacteria. In: Biotechnology, vol 3, 2nd edn. Weinheim, New YorkGoogle Scholar
  89. Verho R, Londesborough J, Penttilä M, Richard P (2003) Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol 69(10):5892–5897PubMedCentralPubMedCrossRefGoogle Scholar
  90. Walton S, Heiningen AV, Walsum PV (2010) Inhibition effects on fermentation of hardwood extracted hemicelluloses by acetic acid and sodium. Bioresour Technol 101(6):1935–1940. doi:10.1016/j.biortech.2009.10.043 PubMedCrossRefGoogle Scholar
  91. Wang J, Wang JQ, Zhou H, Feng T (2009) Effects of addition of previously fermented juice prepared from alfalfa on fermentation quality and protein degradation of alfalfa silage. Anim Feed Sci Technol 151(3–4):280–290. doi:10.1016/j.anifeedsci.2009.03.001 CrossRefGoogle Scholar
  92. Weinberg Z (2008) Preservation of forage crops by solid-state lactic acid fermentation-ensiling. In: Pandey A, Soccol C, Larroche C (eds) Current developments in solid-state fermentation. Springer, New York, pp 443–467CrossRefGoogle Scholar
  93. Weinberg ZG, Muck RE (1996) New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiol Rev 19(1):53–68. doi:10.1111/j.1574-6976.1996.tb00253.x CrossRefGoogle Scholar
  94. Whittenbury R (1962) An investigation of the lactic acid bacteria. Dissertation/Thesis, ProQuest, UMI Dissertations Publishing U6 - ctx_ver = Z39.88-2004&ctx_enc = info%3Aofi%2Fenc%3AUTF-8&rfr_id = info:sid/summon.serialssolutions.com&rft_val_fmt = info:ofi/fmt:kev:mtx:dissertation&rft.genre = dissertation&rft.title = An + investigation + of + the + lactic + acid + bacteria&rftGoogle Scholar
  95. Winters AL, Merry RJ, MÜLler M, Davies DR, Pahlow G, Müller T (1998) Degradation of fructans by epiphytic and inoculant lactic acid bacteria during ensilage of grass. J Appl Microbiol (Print) 84(2):304–312CrossRefGoogle Scholar
  96. Wu CH, Mulchandani A, Chen W (2008) Versatile microbial surface-display for environmental remediation and biofuels production. Trends Microbiol 16(4):181–188PubMedCrossRefGoogle Scholar
  97. Xavier AM, Correia MF, Pereira SR, Evtuguin DV (2010) Second-generation bioethanol from eucalypt sulphite spent liquor. Bioresour Technol 101(8):2755–2761PubMedCrossRefGoogle Scholar
  98. Zhang JG, Cai Y, Kobayashi R, Kumai S (2000) Characteristics of lactic acid bacteria isolated from forage crops and their effects on silage fermentation. J Sci Food Agric 80(10):1455–1460. doi:10.1002/1097-0010(200008)80:10<1455::aid-jsfa667>3.0.co;2-cCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Mette Hedegaard Thomsen
    • 1
  • Ayah Alassali
    • 1
  • Iwona Cybulska
    • 1
  • Ahmed F. Yousef
    • 2
  • Jonathan Jed Brown
    • 1
  • Margrethe Andersen
    • 3
  • Alexander Ratkov
    • 4
  • Pauli Kiel
    • 3
  1. 1.Department of Chemical and Environmental Engineering, Institute Centre for Energy (iEnergy)Masdar Institute of Science and TechnologyAbu DhabiUnited Arab Emirates
  2. 2.Institute Centre for Water and Environment (iWATER), Department of Chemical and Environmental EngineeringMasdar Institute of Science and TechnologyAbu DhabiUnited Arab Emirates
  3. 3.Biotest ApsMiddelfartDenmark
  4. 4.Bulgarian Academy of Sciences, Institute of MicrobiologySofiaBulgaria

Personalised recommendations