Skip to main content

Microorganism for Bioconversion of Sugar Hydrolysates into Lipids

  • Chapter
  • First Online:
Microorganisms in Biorefineries

Abstract

Metabolic and genetic engineering and further other genomics, transcriptomics, and metabolomics tools still need to be further developed to provide more useful information and new ways on enhancing lipid production in oleaginous microorganisms, optimizing fatty acid (FA) profiles, enhancing lipid accumulation, and improving the use of low-cost raw materials as lignocellulosic hydrolysates. Several oleaginous organisms have been described as good lipid producers, being the fast ones the yeasts. However the kinetics for this production is much slower than that required for industrial processes, unless the products are sold at high competitive prices (fine chemicals, cosmetics, and food), covering the costs for the long residential bioreactor times.

Microalgal cultivation in heterotrophic systems is able to use organic carbon sources, sugars, or organic acids, and this cultivation mode offers some advantages over autotrophic cultivation including increased lipid productivity, besides good control of the cultivation process and low cost for harvesting the biomass, since higher cell density is obtained. However, the feasibility of large-scale cultures of microalgae in heterotrophic conditions is still limited by, among other things, the high cost of organic substrates used in this type of cultivation, unless urban/agricultural/industrial wastes are used as lignocellulose and wastewater and sewage are used as carbon or mineral sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG (2011) Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol 90(4):1219–1227. doi:10.1007/s00253-011-3200-z

    CAS  PubMed  Google Scholar 

  • Alper H, Stephanopoulos G (2009) Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 7(10):715–723. doi:10.1038/nrmicro2186

    CAS  PubMed  Google Scholar 

  • Alvarez HM, Kalscheuer R, Steinbuchel A (2000) Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126. Appl Microbiol Biotechnol 54(2):218–223

    CAS  PubMed  Google Scholar 

  • Alvarez HM, Steinbuchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60(4):367–376. doi:10.1007/s00253-002-1135-0

    CAS  PubMed  Google Scholar 

  • Anschau A, Xavier MCA, Hernalsteens S, Franco TT (2014) Effect of feeding strategies on lipid production by Lipomyces starkeyi. Bioresour Technol 157:214–222. doi:10.1016/j.biortech.2014.01.104

    CAS  PubMed  Google Scholar 

  • Aristizabal RVS, Franco TT, Caruso CS (2012) Adaptation of Lipomyces starkeyi DSM 70296 by evolutionary engineering in culture medium containing sugarcane bagasse hydrolysate. Paper presented at the 24th interamerican congress of chemical engineering, Uruguay

    Google Scholar 

  • Ashraful AM, Masjuki HH, Kalam MA, Rizwanul Fattah IM, Imtenan S, Shahir SA, Mobarak HM (2014) Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils: a review. Energy Convers Manag 80:202–228. doi:10.1016/j.enconman.2014.01.037

    CAS  Google Scholar 

  • Baboshin MA, Golovleva LA (2005) The relative value of redox potential in Rhodococcus rhodochrous cells as a function of their growth rate. Microbiology 74(1):118–119

    CAS  Google Scholar 

  • Balat M (2011) Potential alternatives to edible oils for biodiesel production–a review of current work. Energy Convers Manag 52(2):1479–1492. doi:10.1016/j.enconman.2010.10.011

    CAS  Google Scholar 

  • Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, Chardot T, Nicaud JM (2008) Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol 74(24):7779–7789. doi:10.1128/aem.01412-08

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bougaran G, Rouxel C, Dubois N, Kaas R, Grouas S, Lukomska E, Coz J, Cadoret J (2012) Enhancement of neutral lipid productivity in the microalga Isochrysis affinis galbana (T-Iso) by a mutation selection procedure. Biotechnol Bioeng 109(11):2737–2745. doi:10.1002/bit.24560/abstract

    CAS  PubMed  Google Scholar 

  • Buchgraber M, Ulberth F, Emons H, Anklam E (2004) Triacylglycerol profiling by using chromatographic techniques. Eur J Lipid Sci Technol 106(9):621–648. doi:10.1002/ejlt.200400986

    CAS  Google Scholar 

  • Cahoon EB, Schmid KM (2008) Metabolic engineering of the content and fatty acid composition of vegetable oils. In: Bohnert HJ, Nguyen H, Lewis NG (eds) Bioengineering and molecular biology of plant pathways, vol 1. Pergamon, New York, pp 161–200. doi:10.1016/s1755-0408(07)01007-7

    Google Scholar 

  • Carvalheiro F, Duarte LC, Gírio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 67(11):849–864

    CAS  Google Scholar 

  • Chandel AK, Antunes FAF, Arruda PV, Milessi TSS, Silva SS, Almeida Felipe MG (2012) Dilute acid hydrolysis of agro-residues for the depolymerization of hemicellulose: state-of-the-art. In: da Silva SS, Chandel AK (eds) D-Xylitol: fermentative production, application and commercialization. Springer, Berlin, pp 39–61. doi:10.1007/978-3-642-31887-0_2

    Google Scholar 

  • Chandel AK, Silva SS, Singh OV (2011) Detoxification of lignocellulosic hydrolysates for improved bioethanol production. In: Bernardes MAS (ed) Biofuel production–recent developments and prospects. InTech, Rijeka, pp 225–246. doi:10.5772/16454

    Google Scholar 

  • Chandel AK, Singh OV, Venkateswar Rao L (2010) Biotechnological applications of hemicellulosic derived sugars: state-of-the-art. In: Singh OV, Harvey SP (eds) Sustainable biotechnology: renewable resources and new perspectives. Springer, Dordrecht, pp 63–81. doi:10.1007/978-90-481-3295-9_4

    Google Scholar 

  • Chen X, Li Z, Zhang X, Hu F, Ryu DD, Bao J (2009) Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Appl Biochem Biotechnol 159(3):591–604. doi:10.1007/s12010-008-8491-x

    CAS  PubMed  Google Scholar 

  • Chen XF, Huang C, Yang XY, Xiong L, Chen XD, Ma LL (2013) Evaluating the effect of medium composition and fermentation condition on the microbial oil production by Trichosporon cutaneum on corncob acid hydrolysate. Bioresour Technol 143:18–24. doi:10.1016/j.biortech.2013.05.102

    CAS  PubMed  Google Scholar 

  • Cheng Y, Lu Y, Gao C, Wu Q (2009a) Alga-based biodiesel production and optimization using sugar cane as the feedstock. Energy Fuels 23(8):4166–4173

    CAS  Google Scholar 

  • Cheng Y, Zhou W, Gao C, Lan K, Gao Y, Wu Q (2009b) Biodiesel production from Jerusalem artichoke (Helianthus tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides. J Chem Technol Biotechnol 84(5):777–781

    CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306. doi:10.1016/j.biotechadv.2007.02.001

    CAS  PubMed  Google Scholar 

  • Chua P, Somanchi A (2012) Genetically engineered microorganisms that metabolize xylose. USA Patent WO/2012/154626, 15.11.2012

    Google Scholar 

  • Coelho RS, Franco TT (2013) High biomass productivity from substrate sensitive microalgae. In: Paper presented at the 3rd international conference on algal biomass, biofuels and bioproducts, Toronto

    Google Scholar 

  • Coelho RS, Vidotti ADS, Reis EM, Franco TT (2014) High cell density cultures of microalgae under fed-batch and continuous growth. Chem Eng Trans 38:313–318. doi:10.3303/CET1538053

    Google Scholar 

  • Davis MS, Solbiati J, Cronan JE Jr (2000) Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem 275(37):28593–28598. doi:10.1074/jbc.M004756200

    CAS  PubMed  Google Scholar 

  • Dulermo T, Nicaud JM (2011) Involvement of the G3P shuttle and beta-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab Eng 13(5):482–491. doi:10.1016/j.ymben.2011.05.002

    CAS  PubMed  Google Scholar 

  • Dunahay TG, Jaruis EE, Roessler PG (1995) Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J Phychol 31:1004–1012

    CAS  Google Scholar 

  • Dunahay TG, Jarvis EE, Dais SS, Roessler PG (1996) Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol 57/58(8):223–231

    CAS  Google Scholar 

  • Economou CN, Aggelis G, Pavlou S, Vayenas DV (2011a) Modeling of single cell oil production under nitrogen limited and substrate inhibition conditions. Biotechnol Bioeng 108(5):1049–1055. doi:10.1002/bit.23026

    CAS  PubMed  Google Scholar 

  • Economou CN, Aggelis G, Pavlou S, Vayenas DV (2011b) Single cell oil production from rice hulls hydrolysate. Bioresour Technol 102(20):9737–9742. doi:10.1016/j.biortech.2011.08.025

    CAS  PubMed  Google Scholar 

  • Eroshin VK, Dedyukhina EG, Satroutdinov AD, Chistyakova TI (2002) Growth-coupled lipid synthesis in Mortierella alpina LPM 301, a producer of arachidonic acid. Microbiology 71(2):169–172

    CAS  Google Scholar 

  • Fakas S, Papanikolaou S, Batsos A, Galiotou-Panayotou M, Mallouchos A, Aggelis G (2009) Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenerg 33(4):573–580. doi:10.1016/j.biombioe.2008.09.006

    CAS  Google Scholar 

  • Gao CF, Zhai Y, Ding Y, Wu QY (2010) Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energy 87(3):756–761. doi:10.1016/j.apenergy.2009.09.006

    CAS  Google Scholar 

  • Gao D, Zeng J, Zheng Y, Yu X, Chen S (2013) Microbial lipid production from xylose by Mortierella isabellina. Bioresour Technol 133:315–321. doi:10.1016/j.biortech.2013.01.132

    CAS  PubMed  Google Scholar 

  • Ge JP, Cai BY, Liu GM, Ling HZ, Fang BZ, Song G, Yang XF, Ping WX (2011) Comparison of different detoxification methods for corn cob hemicelluose hydrolysate to improve ethanol production by Candida shehatae ACCC 20335. Afr J Microbiol Res 5(10):1163–1168

    CAS  Google Scholar 

  • Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101(13):4775–4800. doi:10.1016/j.biortech.2010.01.088

    CAS  PubMed  Google Scholar 

  • Gouda MK, Omar SH, Aouad LM (2008) Single cell oil production by Gordonia sp DG using agro-industrial wastes. World J Microbiol Biotechnol 24(9):1703–1711. doi:10.1007/s11274-008-9664-z

    CAS  Google Scholar 

  • Haagenson DM, Brudvik RL, Lin H, Wiesenborn DP (2010) Implementing an in situ alkaline transesterification method for canola biodiesel quality screening. J Am Oil Chem Soc 87(11):1351–1358. doi:10.1007/s11746-010-1607-9

    CAS  Google Scholar 

  • Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30(3):709–732. doi:10.1016/j.biotechadv.2012.01.001

    CAS  PubMed  Google Scholar 

  • Hawkins RL (1999) Utilization of xylose for growth by the eukaryotic alga, Chlorella. Curr Microbiol 38(6):360–363

    CAS  PubMed  Google Scholar 

  • Heredia-Arroyo T, Wei W, Hu B (2010) Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Appl Biochem Biotechnol 162(7):1978–1995. doi:10.1007/s12010-010-8974-4

    CAS  PubMed  Google Scholar 

  • Heredia-Arroyo T, Wei W, Ruan R, Hu B (2011) Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenerg 35(5):2245–2253. doi:10.1016/j.biombioe.2011.02.036

    CAS  Google Scholar 

  • Hetzler S, Bröker D, Steinbüchela A (2013) Saccharification of cellulose by recombinant Rhodococcus opacus PD630 strains. Appl Environ Microbiol 79(17):5159–5166

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang C, Chen XF, Xiong L, Chen XD, Ma LL (2012a) Oil production by the yeast Trichosporon dermatis cultured in enzymatic hydrolysates of corncobs. Bioresour Technol 110:711–714. doi:10.1016/j.biortech.2012.01.077

    CAS  PubMed  Google Scholar 

  • Huang C, Chen XF, Xiong L, Chen XD, Ma LL, Chen Y (2013) Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnol Adv 31(2):129–139. doi:10.1016/j.biotechadv.2012.08.010

    CAS  PubMed  Google Scholar 

  • Huang C, Wu H, Li R-F, Zong M-H (2012b) Improving lipid production from bagasse hydrolysate with Trichosporon fermentans by response surface methodology. New Biotechnol 29(3):372–378. doi:10.1016/j.nbt.2011.03.008

    CAS  Google Scholar 

  • Huang C, Wu H, Liu Q-P, Li Y-Y, Zong M-H (2011) Effects of aldehydes on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans. J Agric Food Chem 59(9):4606–4613. doi:10.1021/jf104320b

    CAS  PubMed  Google Scholar 

  • Huang C, Zong MH, Wu H, Liu QP (2009) Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresour Technol 100(19):4535–4538. doi:10.1016/j.biortech.2009.04.022

    CAS  PubMed  Google Scholar 

  • Hulteberg C, Karlsson HT, Børresen BT, Eklund MSH (2008) Biodiesel production from microalgae–a feasibility study. Lund University and StatoilHydro ASA, Oslo

    Google Scholar 

  • Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27(8):631–635

    CAS  PubMed  Google Scholar 

  • Jako C, Kumar A, Wei Y, Zou J, Barton DL, Giblin EM, Covello PS, Taylor DC (2001) Seed-specific over-expression of an arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol 126(2):861–874

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karatay SE, Dönmez G (2011) Microbial oil production from thermophile cyanobacteria for biodiesel production. Appl Energy 88(11):3632–3635. doi:10.1016/j.apenergy.2011.04.010

    CAS  Google Scholar 

  • Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86(10):1059–1070. doi:10.1016/j.fuproc.2004.11.002

    CAS  Google Scholar 

  • Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol 29(2):53–61. doi:10.1016/j.tibtech.2010.11.002

    CAS  PubMed  Google Scholar 

  • Kosa M, Ragauskas AJ (2012) Bioconversion of lignin model compounds with oleaginous Rhodococci. Appl Microbiol Biotechnol 93(2):891–900. doi:10.1007/s00253-011-3743-z

    CAS  PubMed  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    CAS  Google Scholar 

  • Kurosawa K, Boccazzi P, de Almeida NM, Sinskey AJ (2010) High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production. J Biotechnol 147(3–4):212–218. doi:10.1016/j.jbiotec.2010.04.003

    CAS  PubMed  Google Scholar 

  • Lacerda LMCF, Reis EM, Anschau A, Piovani MR, Franco TT (2013) Biodiesel production from yeast and microalgae. Paper presented at the 19th national symposium of bioprocesses, Foz do Iguaçú

    Google Scholar 

  • Lei A, Chen H, Shen G, Hu Z, Chen L, Wang J (2012) Expression of fatty acid synthesis genes and fatty acid accumulation in Haematococcus pluvialis under different stressors. Biotechnol Biofuels 5(1):18. doi:10.1186/1754-6834-5-18

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98(4):764–771. doi:10.1002/bit.21489

    CAS  PubMed  Google Scholar 

  • Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S, Hu Q (2010) Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab Eng 12(4):387–391. doi:10.1016/j.ymben.2010.02.002

    PubMed  Google Scholar 

  • Liang MH, Jiang JG (2013) Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res 52(4):395–408. doi:10.1016/j.plipres.2013.05.002

    CAS  PubMed  Google Scholar 

  • Liang Y (2013) Producing liquid transportation fuels from heterotrophic microalgae. Appl Energy 104:860–868. doi:10.1016/j.apenergy.2012.10.067

    CAS  Google Scholar 

  • Liang Y, Tang T, Siddaramu T, Choudhary R, Umagiliyage AL (2012) Lipid production from sweet sorghum bagasse through yeast fermentation. Renew Energy 40(1):130–136. doi:10.1016/j.renene.2011.09.035

    CAS  Google Scholar 

  • Liu B, Zhao Z (2007) Biodiesel production by direct methanolysis of oleaginous microbial biomass. J Chem Technol Biotechnol 82(8):775–780. doi:10.1002/jctb.1744

    CAS  Google Scholar 

  • Lobo IP, Ferreira SLC, Cruz RSD (2009) Biodiesel: quality parameters and analytical methods. Quim Nova 32(6):1596–1608

    CAS  Google Scholar 

  • Lu Y, Zhai Y, Liu M, Wu Q (2009) Biodiesel production from algal oil using cassava (Manihot esculenta crantz) as feedstock. J Appl Phycol 22(5):573–578. doi:10.1007/s10811-009-9496-8

    Google Scholar 

  • Malcata FX (2011) Microalgae and biofuels: a promising partnership? Trends Biotechnol 29(11):542–549. doi:10.1016/j.tibtech.2011.05.005

    CAS  PubMed  Google Scholar 

  • Matos ITSR, Cassa-Barbosa LA, Neto PQC, Filho SA (2012) Cultivation of Trichosporon mycotoxinivorans in sugarcane bagasse hemicellulosic hydrolyzate. Electron J Biotechnol 14(1):1–7. doi:10.2225/vol14-issue1-fulltext-2

    CAS  Google Scholar 

  • Meng X, Ragauskas AJ (2014) Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin Biotechnol 27C:150–158. doi:10.1016/j.copbio.2014.01.014

    Google Scholar 

  • Meng X, Yang JM, Xu X, Zhang L, Nie QJ, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34(1):1–5. doi:10.1016/j.renene.2008.04.014

    Google Scholar 

  • Mitra D, Rasmussen ML, Chand P, Chintareddy VR, Yao L, Grewell D, Verkade JG, Wang T, van Leeuwen JH (2012) Value-added oil and animal feed production from corn-ethanol stillage using the oleaginous fungus Mucor circinelloides. Bioresour Technol 107:368–375. doi:10.1016/j.biortech.2011.12.031

    CAS  PubMed  Google Scholar 

  • de Moretti MMS, Bocchini-Martins DA, Nunes CCC, Villena MA, Perrone OM, da Silva R, Boscolo M, Gomes E (2014) Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis. Appl Energy 122:189–195. doi:10.1016/j.apenergy.2014.02.020

    CAS  Google Scholar 

  • Muniraj IK, Xiao L, Hu Z, Zhan X, Shi J (2013) Microbial lipid production from potato processing wastewater using oleaginous filamentous fungi Aspergillus oryzae. Water Res 47(10):3477–3483. doi:10.1016/j.watres.2013.03.046

    CAS  PubMed  Google Scholar 

  • Nie ZK, Deng ZT, Zhang AH, Ji XJ, Huang H (2013) Efficient arachidonic acid-rich oil production by Mortierella alpina through a three-stage fermentation strategy. Bioprocess Biosyst Eng. doi:10.1007/s00449-013-1015-2

    Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000a) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74(1):17–24

    CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000b) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33

    CAS  Google Scholar 

  • Perez-Garcia O, Escalante FM, de Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45(1):11–36. doi:10.1016/j.watres.2010.08.037

    CAS  PubMed  Google Scholar 

  • Pourmir A, Johannes T (2011) Engineering the microalgae strain Chlamydomonas reinhardtii for xylose utilization. Paper presented at the AIChE annual meeting, Minneapolis

    Google Scholar 

  • Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86(11):807–815. doi:10.1016/j.biochi.2004.09.017

    CAS  PubMed  Google Scholar 

  • Reis EM, Anschau A, Franco TT (2012) Lipid extraction from Lipomyces starkeyi. Paper presented at the 26th interamerican congress of chemical engineering, Montevideo

    Google Scholar 

  • Richmond A, Qian H (2004) Handbook of microalgal culture: biotechnology and applied phycology. Wiley, Oxford

    Google Scholar 

  • Ruan ZH, Zanotti M, Zhong Y, Liao W, Ducey C, Liu Y (2013) Co-hydrolysis of lignocellulosic biomass for microbial lipid accumulation. Biotechnol Bioeng 110(4):1039–1049. doi:10.1002/bit.24773

    CAS  PubMed  Google Scholar 

  • Ruenwai R, Cheevadhanarak S, Laoteng K (2009) Overexpression of acetyl-CoA carboxylase gene of Mucor rouxii enhanced fatty acid content in Hansenula polymorpha. Mol Biotechnol 42(3):327–332. doi:10.1007/s12033-009-9155-y

    CAS  PubMed  Google Scholar 

  • Sakuradani E (2010) Advances in the production of various polyunsaturated fatty acids through oleaginous fungus Mortierella alpina breeding. Biosci Biotechnol Biochem 74(5):908–917. doi:10.1271/bbb.100001

    CAS  PubMed  Google Scholar 

  • Sangeeta MS, Pande M, Rani M, Gakhar R, Sharma M, Rani J, Bhaskarwar AN (2014) Alternative fuels: an overview of current trends and scope for future. Renew Sustain Energy Rev 32:697–712. doi:10.1016/j.rser.2014.01.023

    CAS  Google Scholar 

  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37(1):19–27. doi:10.1016/j.renene.2011.06.045

    CAS  Google Scholar 

  • Shi S, Valle-Rodriguez JO, Siewers V, Nielsen J (2011) Prospects for microbial biodiesel production. Biotechnol J 6(3):277–285. doi:10.1002/biot.201000117

    CAS  PubMed  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96. doi:10.1263/jbb.101.87

    CAS  PubMed  Google Scholar 

  • Stoutenburg RM, Perrotta JA, Nakas JP (2011) Overcoming inhibitors in a hemicellulosic hydrolysate: improving fermentability by feedstock detoxification and adaptation of Pichia stipitis. J Ind Microbiol Biotechnol 38(12):1939–1945. doi:10.1007/s10295-011-0981-0

    CAS  PubMed  Google Scholar 

  • Stressler T, Eisele T, Rost J, Haunschild E, Kuhn A, Fischer L (2013) Production of polyunsaturated fatty acids by Mortierella alpina using submerse and solid state fermentation. Chem Ing Technol 85(3):318–322

    CAS  Google Scholar 

  • Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15:1–9. doi:10.1016/j.ymben.2012.08.007

    CAS  PubMed  Google Scholar 

  • Tamano K, Bruno KS, Karagiosis SA, Culley DE, Deng S, Collett JR, Umemura M, Koike H, Baker SE, Machida M (2013) Increased production of fatty acids and triglycerides in Aspergillus oryzae by enhancing expressions of fatty acid synthesis-related genes. Appl Microbiol Biotechnol 97(1):269–281. doi:10.1007/s00253-012-4193-y

    CAS  PubMed  Google Scholar 

  • Tapia EV, Anschau A, Coradini AL, Franco TT, Deckmann AC (2012) Optimization of lipid production by the oleaginous yeast Lipomyces starkeyi by random mutagenesis coupled to cerulenin screening. AMB Express 2(1):64–71. doi:10.1186/2191-0855-2-64

    Google Scholar 

  • Tsigie YA, Wang C-Y, Chi-Thanh T, Ju Y-H (2011) Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Bioresour Technol 102(19):9216–9222. doi:10.1016/j.biortech.2011.06.047

    CAS  PubMed  Google Scholar 

  • Tyburczy C, Brenna ME, DeMari JA, Kothapalli KS, Blank BS, Valentine H, McDonough SP, Banavara D, Diersen-Schade DA, Brenna JT (2011) Evaluation of bioequivalency and toxicological effects of three sources of arachidonic acid (ARA) in domestic piglets. Food Chem Toxicol 49(9):2320–2327. doi:10.1016/j.fct.2011.06.033

    CAS  PubMed Central  PubMed  Google Scholar 

  • Van Vleet JH, Jeffries TW (2009) Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 20(3):300–306. doi:10.1016/j.copbio.2009.06.001

    PubMed  Google Scholar 

  • Vicente G, Bautista LF, Rodriguez R, Gutierrez FJ, Sadaba I, Ruiz-Vazquez RM, Torres-Martinez S, Garre V (2009) Biodiesel production from biomass of an oleaginous fungus. Biochem Eng J 48(1):22–27. doi:10.1016/j.bej.2009.07.014

    CAS  Google Scholar 

  • Vidotti ADS, Coelho RS, Franco LM, Franco TT (2014) Miniaturized culture for heterotrophic microalgae using low cost carbon sources as a tool to isolate fast and economical strains. Chem Eng Trans 38:325–330. doi:10.3303/CET1438055

    Google Scholar 

  • Vidotti ADS, Lacerda LMCF, Franco TT (2013) Substrate inhibition of Chlorella sp. by acetate in heterotrophic culture. Paper presented at the 3rd international conference on algal biomass, biofuels and bioproducts, Toronto

    Google Scholar 

  • Wang B, Rezenom YH, Cho K-C, Tran JL, Lee DG, Russell DH, Gill JJ, Young R, Chu K-H (2014) Cultivation of lipid-producing bacteria with lignocellulosic biomass: effects of inhibitory compounds of lignocellulosic hydrolysates. Bioresour Technol 161:162–170. doi:10.1016/j.biortech.2014.02.133

    CAS  PubMed  Google Scholar 

  • Wang L, Chen W, Feng Y, Ren Y, Gu Z, Chen H, Wang H, Thomas MJ, Zhang B, Berquin IM, Li Y, Wu J, Zhang H, Song Y, Liu X, Norris JS, Wang S, Du P, Shen J, Wang N, Yang Y, Wang W, Feng L, Ratledge C, Zhang H, Chen YQ (2011) Genome characterization of the oleaginous fungus Mortierella alpina. PLoS ONE 6(12):e28319. doi:10.1371/journal.pone.0028319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wei A, Zhang X, Wei D, Chen G, Wu Q, Yang ST (2009) Effects of cassava starch hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides. J Ind Microbiol Biotechnol 36(11):1383–1389. doi:10.1007/s10295-009-0624-x

    CAS  PubMed  Google Scholar 

  • Wynn JP, Ratledge C (2005) Oils from microorganisms. In: Shahidi F (ed) Bailey’s industrial oil and fat products, vol 3, 6th edn, Edible oil and fat products: specially oils and oil products. Wiley, Hoboken, pp 121–153

    Google Scholar 

  • Xiong X, Wang X, Chen S (2012) Engineering of a xylose metabolic pathway in Rhodococcus strains. Appl Environ Microbiol 78(16):5483–5491. doi:10.1128/AEM.08022-11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126(4):499–507. doi:10.1016/j.jbiotec.2006.05.002

    CAS  PubMed  Google Scholar 

  • Yan D, Lu Y, Chen YF, Wu Q (2011) Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresour Technol 102(11):6487–6493. doi:10.1016/j.biortech.2011.03.036

    CAS  PubMed  Google Scholar 

  • Yeh K-L, Chen C-Y, Chang J-S (2012) pH-stat photoheterotrophic cultivation of indigenous Chlorella vulgaris ESP-31 for biomass and lipid production using acetic acid as the carbon source. Biochem Eng J 64:1–7. doi:10.1016/j.bej.2012.02.006

    CAS  Google Scholar 

  • Yu X, Zheng Y, Dorgan KM, Chen S (2011) Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour Technol 102(10):6134–6140. doi:10.1016/j.biortech.2011.02.081

    CAS  PubMed  Google Scholar 

  • Zeng J, Zheng Y, Yu X, Yu L, Gao D, Chen S (2013) Lignocellulosic biomass as a carbohydrate source for lipid production by Mortierella isabellina. Bioresour Technol 128:385–391. doi:10.1016/j.biortech.2012.10.079

    CAS  PubMed  Google Scholar 

  • Zhang X, Li M, Agrawal A, San KY (2011) Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases. Metab Eng 13(6):713–722. doi:10.1016/j.ymben.2011.09.007

    CAS  PubMed  Google Scholar 

  • Zhang X, Li M, Wei D, Wang X, Chen X, Xing L (2007) Disruption of the fatty acid Delta6-desaturase gene in the oil-producing fungus Mortierella isabellina by homologous recombination. Curr Microbiol 55(2):128–134. doi:10.1007/s00284-006-0641-1

    CAS  PubMed  Google Scholar 

  • Zhao B (2005) Toward cheaper microbial oil for biodiesel oil. J Chin Biotechnol 25:8–11

    Google Scholar 

  • Zheng Y, Li T, Yu X, Bates PD, Dong T, Chen S (2013) High-density fed-batch culture of a thermotolerant microalga Chlorella sorokiniana for biofuel production. Appl Energy 108:281–287. doi:10.1016/j.apenergy.2013.02.059

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Telma Teixeira Franco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Coradini, A.L.V. et al. (2015). Microorganism for Bioconversion of Sugar Hydrolysates into Lipids. In: Kamm, B. (eds) Microorganisms in Biorefineries. Microbiology Monographs, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45209-7_3

Download citation

Publish with us

Policies and ethics