Skip to main content

Production of Industrially Relevant Isoprenoid Compounds in Engineered Microbes

  • Chapter
  • First Online:
Microorganisms in Biorefineries

Part of the book series: Microbiology Monographs ((MICROMONO,volume 26))

Abstract

Isoprenoids are the largest class of natural compounds and have extremely diverse chemical and functional properties. They are involved in many different cellular processes, including hormonal regulation, signalling, pest/pathogen defence and redox status. They also provide many of the colours, flavours and aromas found in biology. The diversity of isoprenoids lends them to a wide variety of biotechnological applications, both by exploiting their myriad natural functions and by using them as industrial chemicals/chemical feedstocks. These applications range from fine chemicals (pharmaceuticals, nutraceuticals, antimicrobials) through mid-volume (flavours, fragrances, colourants, fuel additives) and bulk (fuels, synthetic polymers, agricultural chemicals, etc.) products. However, in their natural context, individual isoprenoids are not usually found at sufficient abundance for industrial use. Moreover, extraction and/or purification may be difficult and/or expensive, or production may be highly variable, making industrial production processes challenging or impossible. Artificial synthesis is often not possible due to complexity, expense or other chemical properties/requirements. Consequently, there is a strong movement towards bioengineering of microbes for production of these valuable compounds in controlled fermentation conditions. Here we consider the requirements for developing economically viable isoprenoid production bioprocesses as well as the current state of the art in engineering production in microbes. We also discuss some of the challenges we face in bringing these technologies to the market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas CA (2006) Production of antioxidants, aromas, colours, flavours, and vitamins by yeasts. In: Querol A, Fleet G (eds) Yeasts in food and beverages. Springer, Berlin, pp 285–334. doi:10.1007/978-3-540-28398-0_10

    Google Scholar 

  • Agresti J (2012) Gel-encapsulated microcolony screening. US Patent US 13/360,620

    Google Scholar 

  • Ajikumar PK, Tyo K, Carlsen S, Mucha O, Phon TH, Stephanopoulos G (2008) Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. Mol Pharm 5(2):167–190. doi:10.1021/mp700151b

    CAS  PubMed  Google Scholar 

  • Ajikumar PK, Xiao W-H, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330(6000):70–74. doi:10.1126/science.1191652

    CAS  PubMed Central  PubMed  Google Scholar 

  • Albrecht M, Misawa N, Sandmann G (1999) Metabolic engineering of the terpenoid biosynthetic pathway of Escherichia coli for production of the carotenoids β-carotene and zeaxanthin. Biotechnol Lett 21(9):791–795

    CAS  Google Scholar 

  • Alonso-Gutierrez J, Chan R, Batth TS, Adams PD, Keasling JD, Petzold CJ, Lee TS (2013) Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng 19:33–41. doi:10.1016/j.ymben.2013.05.004

    CAS  PubMed  Google Scholar 

  • Alper H, Jin YS, Moxley JF, Stephanopoulos G (2005a) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 7(3):155–164. doi:10.1016/j.ymben.2004.12.003

    CAS  PubMed  Google Scholar 

  • Alper H, Miyaoku K, Stephanopoulos G (2005b) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23(5):612–616

    CAS  PubMed  Google Scholar 

  • Amyris (2013) Annual Report 2013. http://investors.amyris.com/secfiling.cfm?filingID=1365916-14-7

  • Archer C, Kim J, Jeong H, Park J, Vickers C, Lee S, Nielsen L (2011) The genome sequence of E. coli W ATCC 9637: comparative genome analysis and an improved genome-scale model of E. coli. BMC Genomics 12(9):9

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arifin Y, Sabri S, Sugiarto H, Krömer JO, Vickers CE, Nielsen LK (2011) Deletion of cscR in Escherichia coli W improves growth and poly-3-hydroxyburyrate (PHB) production from sucrose in fed batch culture. J Biotechnol 156:275. doi:10.1016/j.jbiotec.2011.07.003

    CAS  Google Scholar 

  • Asadollahi MA, Maury J, Moller K, Nielsen KF, Schalk M, Clark A, Nielsen J (2008) Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnol Bioeng 99(3):666–677

    CAS  PubMed  Google Scholar 

  • Asadollahi MA, Maury J, Patil KR, Schalk M, Clark A, Nielsen J (2009) Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metab Eng 11(6):328–334. doi:10.1016/j.ymben.2009.07.001

    CAS  PubMed  Google Scholar 

  • Asadollahi MA, Maury J, Schalk M, Clark A, Nielsen J (2010) Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae. Biotechnol Bioeng 106(1):86–96. doi:10.1002/bit.22668

    CAS  PubMed  Google Scholar 

  • Babiskin AH, Smolke CD (2011) A synthetic library of RNA control modules for predictable tuning of gene expression in yeast. Mol Syst Biol 7(1):471. doi:10.1038/msb.2011.4

    CAS  PubMed Central  PubMed  Google Scholar 

  • Badee AZM, Helmy SA, Morsy NFS (2011) Utilisation of orange peel in the production of α-terpineol by Penicillium digitatum (NRRL 1202). Food Chem 126(3):849–854. doi:10.1016/j.foodchem.2010.11.046

    CAS  Google Scholar 

  • Bar R (1987) Phase toxicity in a water-solvent two-liquid phase microbial system. In: Laane C, Tramper J, Lilly MD (eds) Studies in organic chemistry, vol 29. Biocatalysis in organic media; International symposium, Wageningen, The Netherlands, 7–10 Dec 1986. Xii + 426p. Elsevier, Amsterdam, Illus. pp 147–154 (Dist. in the USA and Canada by Elsevier Science Publishing Co., Inc.: New York, NY, USA)

    Google Scholar 

  • Beck ZQ, Cervin MA, Nielsen AT, Peres CM (2013) Compositions and methods of PGL for the increased production of isoprene. US Patent 845,523,6B2

    Google Scholar 

  • Behrendorff JBYH, Vickers CE, Chrysanthopoulos P, Nielsen LK (2013) 2,2-Diphenyl-1-picrylhydrazyl as a screening tool for recombinant monoterpene biosynthesis. Microb Cell Fact 12:76. doi:10.1186/1475-2859-12-76

    PubMed Central  PubMed  Google Scholar 

  • Bentley FK, García-Cerdán JG, Chen H-C, Melis A (2013) Paradigm of monoterpene (β-phellandrene) hydrocarbons production via photosynthesis in cyanobacteria. Bioenergy Res 6(3):917–929

    CAS  Google Scholar 

  • Bentley FK, Zurbriggen A, Melis A (2014) Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Mol Plant 7(1):71–86. doi:10.1093/mp/sst134

    CAS  PubMed  Google Scholar 

  • Bettiga M, Bengtsson O, Hahn-Hagerdal B, Gorwa-Grauslund M (2009) Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microb Cell Fact 8(1):12

    Google Scholar 

  • Bhataya A, Schmidt-Dannert C, Lee PC (2009) Metabolic engineering of Pichia pastoris X-33 for lycopene production. Process Biochem 44(10):1095–1102. doi:10.1016/j.procbio.2009.05.012

    CAS  Google Scholar 

  • Bisson LF, Karpel JE (2010) Genetics of yeast impacting wine quality. Annu Rev Food Sci Technol 1(1):139–162. doi:10.1146/annurev.food.080708.100734

    CAS  PubMed  Google Scholar 

  • Blanch HW, Simmons BA, Klein-Marcuschamer D (2011) Biomass deconstruction to sugars. Biotechnol J 6(9):1086–1102. doi:10.1002/biot.201000180

    CAS  PubMed  Google Scholar 

  • Boghigian BA, Salas D, Ajikumar PK, Stephanopoulos G, Pfeifer B (2012) Analysis of heterologous taxadiene production in K- and B-derived Escherichia coli. Appl Microbiol Biotechnol 93(4):1651–1661. doi:10.1007/s00253-011-3528-4

    CAS  PubMed  Google Scholar 

  • Brennan TCR, Turner CD, Krömer JO, Nielsen LK (2012) Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnol Bioeng 109(10):2513–2522. doi:10.1002/bit.24536

    CAS  PubMed  Google Scholar 

  • Brennan TCR, Krömer JO, Nielsen LK (2013) Physiological and transcriptional responses of Saccharomyces cerevisiae to d-limonene show changes to the cell wall but not to the plasma membrane. Appl Environ Microbiol 79(12):3590–3600. doi:10.1128/aem.00463-13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brindle KM, Fulton AM, Williams S-P (1993) Enzymology in vivo using NMR and molecular genetics. J Mol Recognit 6(4):159–165. doi:10.1002/jmr.300060404

    CAS  PubMed  Google Scholar 

  • Bruschi M, Boyes S, Sugiarto H, Nielsen LK, Vickers CE (2011) A transferrable sucrose utilization approach for non-sucrose-utilizing Escherichia coli strains. Biotechnol Adv 30(5):1001–1010. doi:10.1016/j.biotechadv.2011.08.019

    PubMed  Google Scholar 

  • Bull AT, Ward AC, Goodfellow M (2000) Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev 64(3):573–606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Campos N, Rodríguez-Concepción M, Sauret-Gueto S, Gallego F, Lois LM, Boronat A (2001) Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate: a novel system for the genetic analysis of the 2-C-methyl-D-erythritol 4-phosphate pathway for isoprenoid biosynthesis. Biochem J 353:59–67

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carrau FM, Medina K, Boido E, Farina L, Gaggero C, Dellacassa E, Versini G, Henschke PA (2005) De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. FEMS Microbiol Lett 243(1):107–115. doi:10.1016/j.femsle.2004.11.050

    CAS  PubMed  Google Scholar 

  • Carter OA, Peters RJ, Croteau R (2003) Monoterpene biosynthesis pathway construction in Escherichia coli. Phytochemistry 64(2):425–433. doi:10.1016/s0031-9422(03)00204-8

    CAS  PubMed  Google Scholar 

  • Chae HS, Kim KH, Kim SC, Lee PC (2010) Strain-dependent carotenoid productions in metabolically engineered Escherichia coli. Appl Biochem Biotechnol 162(8):2333–2344. doi:10.1007/s12010-010-9006-0

    CAS  PubMed  Google Scholar 

  • Chambon C, Ladeveze V, Servouse M, Blanchard L, Javelof C, Vladescu B, Karst F (1991) Sterol pathway in yeast. Identification and properties of mutant strains defective in mevalonate diphosphate decarboxylase and farnesyl diphosphate synthetase. Lipids 26(8):633–636. doi:10.1007/bf02536428

    CAS  PubMed  Google Scholar 

  • Cordente A, Curtin C, Varela C, Pretorius I (2012) Flavour-active wine yeasts. Appl Microbiol Biotechnol 96(3):601–618. doi:10.1007/s00253-012-4370-z

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davies FK, Work VH, Beliaev AS, Posewitz MC (2014) Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002. Front Bioeng Biotechnol 2:21. doi:10.3389/fbioe.2014.00021

    PubMed Central  PubMed  Google Scholar 

  • de Carvalho CCCR, da Fonseca MMR (2006) Biotransformation of terpenes. Biotechnol Adv 24(2):134–142. doi:10.1016/j.biotechadv.2005.08.004

    PubMed  Google Scholar 

  • DeJong JM, Liu YL, Bollon AP, Long RM, Jennewein S, Williams D, Croteau RB (2006) Genetic engineering of Taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol Bioeng 93(2):212–224

    CAS  PubMed  Google Scholar 

  • Dellas N, Thomas ST, Manning G, Noel JP, Weigel D (2013) Discovery of a metabolic alternative to the classical mevalonate pathway. eLife 2:e00672. doi:10.7554/eLife.00672

    PubMed Central  PubMed  Google Scholar 

  • Ding J, Huang X, Zhang L, Zhao N, Yang D, Zhang K (2009) Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 85(2):253–263. doi:10.1007/s00253-009-2223-1

    CAS  PubMed  Google Scholar 

  • Duetz WA, Bouwmeester H, van Beilen JB, Witholt B (2003) Biotransformation of limonene by bacteria, fungi, yeasts, and plants. Appl Microbiol Biotechnol 61(4):269–277. doi:10.1007/s00253-003-1221-y

    CAS  PubMed  Google Scholar 

  • Dufossé L (2009) Microbial and microalgal carotenoids as colourants and supplements. In: Britton G, Pfander H, Liaaen-Jensen S (eds) Carotenoids, vol 5. Birkhäuser, Basel, pp 83–98. doi:10.1007/978-3-7643-7501-0_5

    Google Scholar 

  • Dunlop MJ (2011) Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels 4:32. doi:10.1186/1754-6834-4-32

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, Keasling JD, Hadi MZ, Mukhopadhyay A (2011) Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol 7:487. doi:10.1038/msb.2011.21

    PubMed Central  PubMed  Google Scholar 

  • Dutta A, Talmadge M, Hensley J, Worley M, Dudgeon D, Barton D, Groendijk P, Ferrari D, Stears B, Searcy EM, Wright CT, Hess JR (2011) Process design and economics for conversion of lignocellulosic biomass to ethanol. National Renewable Energy Laboratory

    Google Scholar 

  • Eisenreich W, Bacher A, Arigoni D, Rohdich F (2004) Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci 61(12):1401–1426

    CAS  PubMed  Google Scholar 

  • Englund E, Pattanaik B, Ubhayasekera SJ, Stensjo K, Bergquist J, Lindberg P (2014) Production of squalene in Synechocystis sp. PCC 6803. PLoS One 9(3):e90270

    PubMed Central  PubMed  Google Scholar 

  • Farmer WR, Liao JC (2000) Improving lycopene production in Escherichia coli by engineering metabolic control. Nat Biotechnol 18(5):533–537

    CAS  PubMed  Google Scholar 

  • Farmer WR, Liao JC (2001) Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. Biotechnol Prog 17(1):57–61

    CAS  PubMed  Google Scholar 

  • Fernandes S, Murray P (2010) Metabolic engineering for improved microbial pentose fermentation. Bioeng Bugs 1(6):424–428. doi:10.4161/bbug.1.6.12724

    PubMed Central  PubMed  Google Scholar 

  • Fischer MJC, Meyer S, Claudel P, Bergdoll M, Karst F (2011) Metabolic engineering of monoterpene synthesis in yeast. Biotechnol Bioeng 2011(108):1883–1892. doi:10.1002/bit.23129

    Google Scholar 

  • Foo JL, Leong SSJ (2013) Directed evolution of an E. coli inner membrane transporter for improved efflux of biofuel molecules. Biotechnol Biofuels 6(1):81

    CAS  PubMed Central  PubMed  Google Scholar 

  • Formighieri C, Melis A (2014) Regulation of β-phellandrene synthase gene expression, recombinant protein accumulation, and monoterpene hydrocarbons production in Synechocystis transformants. Planta 240:309–324

    CAS  PubMed  Google Scholar 

  • Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E, Keasling JD (2008) Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol 26(7):375–381. doi:10.1016/j.tibtech.2008.03.008

    CAS  PubMed  Google Scholar 

  • Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3(7):408–414

    CAS  PubMed  Google Scholar 

  • Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem Phys 6:3181–3210

    CAS  Google Scholar 

  • Halfmann C, Gu L, Zhou R (2014) Engineering cyanobacteria for the production of a cyclic hydrocarbon fuel from CO2 and H2O. Green Chem 16:3175–3185

    CAS  Google Scholar 

  • Heider SA, Peters-Wendisch P, Wendisch VF (2012) Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum. BMC Microbiol 12:198. doi:10.1186/1471-2180-12-198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, De Bont JAM (1994) Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol 12(10):409–415. doi:10.1016/0167-7799(94)90029-9

    CAS  Google Scholar 

  • Hellier P, Al-Haj L, Talibi M, Purton S, Ladommatos N (2013) Combustion and emissions characterization of terpenes with a view to their biological production in cyanobacteria. Fuel 111:670–688

    CAS  Google Scholar 

  • Hermann B, Patel M (2007) Today’s and tomorrow’s bio-based bulk chemicals from white biotechnology. Appl Biochem Biotechnol 136(3):361–388

    CAS  PubMed  Google Scholar 

  • Herrero O, Ramón D, Orejas M (2008) Engineering the Saccharomyces cerevisiae isoprenoid pathway for de novo production of aromatic monoterpenes in wine. Metab Eng 10(2):78–86. doi:10.1016/j.ymben.2007.11.001

    CAS  PubMed  Google Scholar 

  • Holstein S, Hohl R (2004) Isoprenoids: remarkable diversity of form and function. Lipids 39(4):293–309

    CAS  PubMed  Google Scholar 

  • Hong S-Y, Zurbriggen AS, Melis A (2012) Isoprene hydrocarbons production upon heterologous transformation of Saccharomyces cerevisiae. J Appl Microbiol 113(1):52–65. doi:10.1111/j.1365-2672.2012.05319.x

    CAS  PubMed  Google Scholar 

  • Houston JB (1994) Relevance of in vitro kinetic parameters to in vivo metabolism of xenobiotics. Toxicol In Vitro 8(4):507–512. doi:10.1016/0887-2333(94)90002-7

    CAS  PubMed  Google Scholar 

  • Huang Q, Roessner CA, Croteau R, Scott AI (2001) Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorg Med Chem 9(9):2237–2242. doi:10.1016/s0968-0896(01)00072-4

    CAS  PubMed  Google Scholar 

  • Ignea C, Cvetkovic I, Loupassaki S, Kefalas P, Johnson C, Kampranis S, Makris A (2011) Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids. Microb Cell Fact 10(1):4

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ignea C, Trikka FA, Kourtzelis I, Argiriou A, Kanellis AK, Kampranis SC, Makris AM (2012) Positive genetic interactors of HMG2 identify a new set of genetic perturbations for improving sesquiterpene production in Saccharomyces cerevisiae. Microb Cell Fact 11:162. doi:10.1186/1475-2859-11-162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ignea C, Pontini M, Maffei ME, Makris AM, Kampranis SC (2013) Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase. ACS Synth Biol. doi:10.1021/sb400115e

    Google Scholar 

  • Inoue A, Horikoshi K (1991) Estimation of solvent-tolerance of bacteria by the solvent parameter log P. J Ferment Bioeng 71(3):194–196. doi:10.1016/0922-338x(91)90109-t

    CAS  Google Scholar 

  • Jackson BE, Hart-Wells EA, Matsuda SPT (2003) Metabolic engineering to produce sesquiterpenes in yeast. Org Lett 5:1629–1632

    CAS  PubMed  Google Scholar 

  • Javelot C, Karst F, Ladeveze V, Chambon C, Vladescu B (1989) Production of monoterpenes by yeast mutants defective in sterol biosynthesis. In: Nga BH, Lee YK (eds) Microbiology applications in food technology. Elsevier Applied Science, London, pp 101–122

    Google Scholar 

  • Jin YS, Stephanopoulos G (2007) Multi-dimensional gene target search for improving lycopene biosynthesis in Escherichia coli. Metab Eng 9(4):337–347. doi:10.1016/j.ymben.2007.03.003

    CAS  PubMed  Google Scholar 

  • Kajiwara S, Fraser PD, Kondo K, Misawa N (1997) Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochem J 324:421–426

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kellogg BA, Poulter CD (1997) Chain elongation in the isoprenoid biosynthetic pathway. Curr Opin Chem Biol 1(4):570–578. doi:10.1016/S1367-5931(97)80054-3

    CAS  PubMed  Google Scholar 

  • Keseler IM, Mackie A, Peralta-Gil M, Santos-Zavaleta A, Gama-Castro S, Bonavides-Martínez C, Fulcher C, Huerta AM, Kothari A, Krummenacker M, Latendresse M, Muñiz-Rascado L, Ong Q, Paley S, Schröder I, Shearer AG, Subhraveti P, Travers M, Weerasinghe D, Weiss V, Collado-Vides J, Gunsalus RP, Paulsen I, Karp PD (2012) EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res. doi:10.1093/nar/gks1027

    Google Scholar 

  • Khor GK, Uzir MH (2011) Saccharomyces cerevisiae: a potential stereospecific reduction tool for biotransformation of mono- and sesquiterpenoids. Yeast 28(2):93–107. doi:10.1002/yea.1827

    CAS  PubMed  Google Scholar 

  • King D (2010) The future of industrial biorefineries. World Economic Forum, Geneva

    Google Scholar 

  • King A, Dickinson JR (2000) Biotransformation of monoterpene alcohols by Saccharomyces cerevisiae, Torulaspora delbrueckii and Kluyveromyces lactis. Yeast 16(6):499–506. doi:10.1002/(sici)1097-0061(200004)16:6<499::aid-yea548>3.0.co;2-e

    CAS  PubMed  Google Scholar 

  • Kiyota H, Okuda Y, Ito M, Hirai MY, Ikeuchi M (2014) Engineering of cyanobacteria for the photosynthetic production of limonene from CO. J Biotechnol 185:1–7. doi:10.1016/j.jbiotec.2014.05.025

    CAS  PubMed  Google Scholar 

  • Krings U, Berger RG (1998) Biotechnological production of flavours and fragrances. Appl Microbiol Biotechnol 49(1):1–8

    CAS  PubMed  Google Scholar 

  • Kuhlman TE, Cox EC (2010) Site-specific chromosomal integration of large synthetic constructs. Nucleic Acids Res 38(6):e92. doi:10.1093/nar/gkp1193

    PubMed Central  PubMed  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    CAS  Google Scholar 

  • Kuzma J, Nemecek-Marshall M, Pollock WH, Fall R (1995) Bacteria produce the volatile hydrocarbon isoprene. Curr Microbiol 30(2):97–103

    CAS  PubMed  Google Scholar 

  • Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19(6):556–563. doi:10.1016/j.copbio.2008.10.014

    CAS  PubMed  Google Scholar 

  • León R, Fernandes P, Pinheiro HM, Cabral JMS (1998) Whole-cell biocatalysis in organic media. Enzyme Microb Technol 23(7–8):483–500. doi:10.1016/s0141-0229(98)00078-7

    Google Scholar 

  • Lichtenthaler HK (2010) The non-mevalonate DOXP/MEP (deoxyxylulose 5-phosphate/methylerythritol 4-phosphate) pathway of chloroplast isoprenoid and pigment biosynthesis. In: Rebeiz CA, Benning C, Bohnert HJ et al (eds) The chloroplast: basics and applications, vol 31, Advances in photosynthesis and respiration. Springer, Dordrecht, pp 95–118

    Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38(4):449–467

    CAS  Google Scholar 

  • Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12(1):70–79. doi:10.1016/j.ymben.2009.10.001

    CAS  PubMed  Google Scholar 

  • Liu J, Zhang W, Du G, Chen J, Zhou J (2013) Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae. J Biotechnol 168(4):446–451. doi:10.1016/j.jbiotec.2013.10.017

    CAS  PubMed  Google Scholar 

  • Lombard J, Moreira D (2011) Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life. Mol Biol Evol 28(1):87–99. doi:10.1093/molbev/msq177

    CAS  PubMed  Google Scholar 

  • Loreto F, Schnitzler JP (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15(3):154–166

    CAS  PubMed  Google Scholar 

  • Loscos N, Hernandez-Orte P, Cacho J, Ferreira V (2007) Release and formation of varietal aroma compounds during alcoholic fermentation from nonfloral grape odorless flavor precursors fractions. J Agric Food Chem 55(16):6674–6684. doi:10.1021/jf0702343

    CAS  PubMed  Google Scholar 

  • Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21(7):796–802. doi:10.1038/nbt833

    CAS  PubMed  Google Scholar 

  • Mirata MA, Heerd D, Schrader J (2009) Integrated bioprocess for the oxidation of limonene to perillic acid with Pseudomonas putida DSM 12264. Process Biochem 44(7):764–771. doi:10.1016/j.procbio.2009.03.013

    CAS  Google Scholar 

  • Miura Y, Kondo K, Shimada H, Saito T, Nakamura K, Misawa N (1997) Production of lycopene by the food yeast, Candida utilis that does not naturally synthesize carotenoid. Biotechnol Bioeng 58(2–3):306–308

    Google Scholar 

  • Miura Y, Kondo K, Saito T, Shimada H, Fraser PD, Misawa N (1998) Production of the carotenoids lycopene, β-carotene, and astaxanthin in the food yeast Candida utilis. Appl Environ Microbiol 64(4):1226–1229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morrone D, Lowry L, Determan MK, Hershey DM, Xu MM, Peters RJ (2010) Increasing diterpene yield with a modular metabolic engineering system in E. coli: comparison of MEV and MEP isoprenoid precursor pathway engineering. Appl Microbiol Biotechnol 85(6):1893–1906. doi:10.1007/s00253-009-2219-x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neales S (2013) Lemons fly as the new juice of jet travel. The Australian, October 9

    Google Scholar 

  • Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12(4):307–331. doi:10.1016/j.ymben.2010.03.004

    CAS  PubMed  Google Scholar 

  • Ohto C, Muramatsu M, Obata S, Sakupadani E, Shimizu S (2009a) Prenyl alcohol production by expression of exogenous isopentenyl diphosphate isomerase and farnesyl diphosphate synthase genes in Escherichia coli. Biosci Biotechnol Biochem 73(1):186–188

    CAS  PubMed  Google Scholar 

  • Ohto C, Muramatsu M, Obata S, Sakuradani E, Shimizu S (2009b) Overexpression of the gene encoding HMG-CoA reductase in Saccharomyces cerevisiae for production of prenyl alcohols. Appl Microbiol Biotechnol 82(5):837–845. doi:10.1007/s00253-008-1807-5

    CAS  PubMed  Google Scholar 

  • Okamura E, Tomita T, Sawa R, Nishiyama M, Kuzuyama T (2010) Unprecedented acetoacetyl-coenzyme A synthesizing enzyme of the thiolase superfamily involved in the mevalonate pathway. Proc Natl Acad Sci U S A 107(25):11265–11270. doi:10.1073/pnas.1000532107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oswald M, Fischer M, Dirninger N, Karst F (2007) Monoterpenoid biosynthesis in Saccharomyces cerevisiae. FEMS Yeast Res 7(3):413–421

    CAS  PubMed  Google Scholar 

  • Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496(7446):528–532. doi:10.1038/nature12051

    CAS  PubMed  Google Scholar 

  • Panray Beeharry R (2001) Carbon balance of sugarcane bioenergy systems. Biomass Bioenergy 20(5):361–370. doi:10.1016/S0961-9534(00)00094-5

    Google Scholar 

  • Paradise EM, Kirby J, Chan R, Keasling JD (2008) Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase. Biotechnol Bioeng 100(2):371–378. doi:10.1002/bit.21766

    CAS  PubMed  Google Scholar 

  • Partow S, Siewers V, Bjørn S, Nielsen J, Maury J (2010) Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27(11):955–964. doi:10.1002/yea.1806

    CAS  PubMed  Google Scholar 

  • Pescheck M, Mirata MA, Brauer B, Krings U, Berger RG, Schrader J (2009) Improved monoterpene biotransformation with Penicillium sp. by use of a closed gas loop bioreactor. J Ind Microbiol Biotechnol 36(6):827–836. doi:10.1007/s10295-009-0558-3

    CAS  PubMed  Google Scholar 

  • Peters D (2006) Carbohydrates for fermentation. Biotechnol J 1(7–8):806–814. doi:10.1002/biot.200600041

    CAS  PubMed  Google Scholar 

  • Pray T (2010) Biomass Research and Development Technical Advisory Committee: drop-in fuels panel. Amyris. Department of Energy Report

    Google Scholar 

  • Ramos JL, Duque E, Huertas MJ, Haidour A (1995) Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J Bacteriol 177(14):3911–3916

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramos JL, Duque E, Godoy P, Segura A (1998) Efflux pumps involved in toluene tolerance in Pseudomonas putida DOT-T1E. J Bacteriol 180(13):3323–3329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rao K, Chaudhari V, Varanasi S, Kim D-S (2007) Enhanced ethanol fermentation of brewery wastewater using the genetically modified strain E. coli KO11. Appl Microbiol Biotechnol 74(1):50–60. doi:10.1007/s00253-006-0643-8

    CAS  PubMed  Google Scholar 

  • Reid SJ, Abratt VR (2005) Sucrose utilisation in bacteria: genetic organisation and regulation. Appl Microbiol Biotechnol 67(3):312–321

    CAS  PubMed  Google Scholar 

  • Reiling KK, Yoshikuni Y, Martin VJJ, Newman J, Bohlmann J, Keasling JD (2004) Mono and diterpene production in Escherichia coli. Biotechnol Bioeng 87(2):200–212

    CAS  PubMed  Google Scholar 

  • Reinsvold RE, Jinkerson RE, Radakovits R, Posewitz MC, Basu C (2011) The production of the sesquiterpene β-caryophyllene in a transgenic strain of the cyanobacterium Synechocystis. J Plant Physiol 168(8):848–852. doi:10.1016/j.jplph.2010.11.006

    CAS  PubMed  Google Scholar 

  • Renninger NS, McPhee DJ (2008) Fuel compositions comprising farnesane and farnesane derivatives and method of making and using same. US Patent 7,399,323

    Google Scholar 

  • Renouf MA, Wegener MK, Nielsen LK (2008) An environmental life cycle assessment comparing Australian sugarcane with US corn and UK sugar beet as producers of sugars for fermentation. Biomass Bioenergy 32(12):1144–1155

    CAS  Google Scholar 

  • Reyes LH, Gomez JM, Kao KC (2014) Improving carotenoids production in yeast via adaptive laboratory evolution. Metab Eng 21:26–33. doi:10.1016/j.ymben.2013.11.002

    CAS  PubMed  Google Scholar 

  • Rico J, Pardo E, Orejas M (2010) Enhanced production of a plant monoterpene by overexpression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase catalytic domain in Saccharomyces cerevisiae. Appl Environ Microbiol 76(19):6449–6454. doi:10.1128/AEM.02987-09

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943

    CAS  PubMed  Google Scholar 

  • Rodríguez-Concepción M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130(3):1079–1089

    PubMed  Google Scholar 

  • Rodríguez-Villalón A, Perez-Gil J, Rodríguez-Concepción M (2008) Carotenoid accumulation in bacteria with enhanced supply of isoprenoid precursors by upregulation of exogenous or endogenous pathways. J Biotechnol 135(1):78–84. doi:10.1016/j.jbiotec.2008.02.023

    PubMed  Google Scholar 

  • Rohmer M (2003) Mevalonate-independent methylerythritol phosphate pathway for isoprenoid biosynthesis. Elucidation and distribution. Pure Appl Chem 75(2–3):375–387

    CAS  Google Scholar 

  • Rude MA, Schirmer A (2009) New microbial fuels: a biotech perspective. Curr Opin Microbiol 12(3):274–281. doi:10.1016/j.mib.2009.04.004

    CAS  PubMed  Google Scholar 

  • Ruhl J, Schmid A, Blank LM (2009) Selected Pseudomonas putida strains able to grow in the presence of high butanol concentrations. Appl Environ Microbiol 75(13):4653–4656. doi:10.1128/aem.00225-09

    PubMed Central  PubMed  Google Scholar 

  • Rushe D (2007) New biofuel gives the power of petrol: ethanol could be eclipsed after a breakthrough by a Silicon Valley firm. The Sunday Times, 27 May 2007

    Google Scholar 

  • Sabri S, Nielsen LK, Vickers CE (2013a) Molecular control of sucrose utilization in Escherichia coli W, an efficient sucrose-utilizing strain. Appl Environ Microbiol 79(2):478–487. doi:10.1128/aem.02544-12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sabri S, Steen JA, Bongers M, Nielsen LK, Vickers CE (2013b) Knock-in/Knock-out (KIKO) vectors for rapid integration of large DNA sequences, including whole metabolic pathways, onto the Escherichia coli chromosome at well-characterised loci. Microb Cell Fact 12:60–68

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sarria S, Wong B, Martín HG, Keasling JD, Peralta-Yahya P (2014) Microbial synthesis of pinene. ACS Synth Biol. doi:10.1021/sb4001382

    PubMed  Google Scholar 

  • Scalcinati G, Knuf C, Partow S, Chen Y, Maury J, Schalk M, Daviet L, Nielsen J, Siewers V (2012) Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquiterpene α-santalene in a fed-batch mode. Metab Eng 14(2):91–103. doi:10.1016/j.ymben.2012.01.007

    CAS  PubMed  Google Scholar 

  • Schrader J, Berger RG (2008) Biotechnological production of terpenoid flavor and fragrance compounds. In: Rehm H-J, Reed G (eds) Biotechnology set. Wiley-VCH Verlag GmbH, Weinheim, pp 373–422. doi:10.1002/9783527620999.ch13k

    Google Scholar 

  • Segura A, Molina L, Fillet S, Krell T, Bernal P, Munoz-Rojas J, Ramos JL (2012) Solvent tolerance in Gram-negative bacteria. Curr Opin Biotechnol 23(3):415–421. doi:10.1016/j.copbio.2011.11.015

    CAS  PubMed  Google Scholar 

  • Sharkey TD, Singsaas EL (1995) Why plants emit isoprene. Nature 374:769

    CAS  Google Scholar 

  • Sharpe PL, DiCosimo D, Bosak MD, Knoke K, Tao L, Cheng Q, Ye RW (2007) Use of transposon promoter-probe vectors in the metabolic engineering of the obligate methanotroph Methylomonas sp. strain 16a for enhanced c40 carotenoid synthesis. Appl Environ Microbiol 73(6):1721–1728. doi:10.1128/aem.01332-06

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shi D-J, Wang C-L, Wang K-M (2009) Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 36(1):139–147. doi:10.1007/s10295-008-0481-z

    CAS  PubMed  Google Scholar 

  • Shiba Y, Paradise EM, Kirby J, Ro DK, Keasling JD (2007) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng 9(2):160–168

    CAS  PubMed  Google Scholar 

  • Shimada H, Kondo K, Fraser PD, Miura Y, Saito T, Misawa N (1998) Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway. Appl Environ Microbiol 64(7):2676–2680

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sikkema J, Weber FJ, Heipieper HJ, de Bont JAM (1994) Cellular toxicity of lipophilic compounds: mechanisms, implications, and adaptations. Biocatalysis 10:113–122

    CAS  Google Scholar 

  • Sikkema J, de Bont J, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59(2):201–222

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song AA-L, Abdullah JO, Abdullah MP, Shafee N, Othman R, Tan E-F, Noor NM, Raha AR (2012) Overexpressing 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) in the lactococcal mevalonate pathway for heterologous plant sesquiterpene production. PLoS One 7(12):e52444. doi:10.1371/journal.pone.0052444

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steen JA, Bohlke N, Vickers CE, Nielsen LK (2014) The trehalose phosphotransferase system (PTS) in E. coli W can transport low levels of sucrose that are sufficient to facilitate induction of the csc sucrose catabolism operon. PLoS One 9(2):e88688

    PubMed Central  PubMed  Google Scholar 

  • Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315(5813):801–804. doi:10.1126/science.1139612

    CAS  PubMed  Google Scholar 

  • St-Pierre F, Cui L, Priest DG, Endy D, Dodd IB, Shearwin KE (2013) One-step cloning and chromosomal integration of DNA. ACS Synth Biol. doi:10.1021/sb400021j

    PubMed  Google Scholar 

  • Swan TM, Watson K (1998) Stress tolerance in a yeast sterol auxotroph: role of ergosterol, heat shock proteins and trehalose. FEMS Microbiol Lett 169(1):191–197. doi:10.1111/j.1574-6968.1998.tb13317.x

    CAS  PubMed  Google Scholar 

  • Takahashi S, Yeo Y, Greenhagen B, McMullin T, Song L, Maurina-Brunker J, Rosson R, Noel JP, Chappell J (2007) Metabolic engineering of sesquiterpene metabolism in yeast. Biotechnol Bioeng 97(1):170–181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takoi K, Koie K, Itoga Y, Katayama Y, Shimase M, Nakayama Y, Watari J (2010) Biotransformation of hop-derived monoterpene alcohols by lager yeast and their contribution to the flavor of hopped beer. J Agric Food Chem 58(8):5050–5058. doi:10.1021/jf1000524

    CAS  PubMed  Google Scholar 

  • Tao L, Sedkova N, Yao H, Ye R, Sharpe P, Cheng Q (2007) Expression of bacterial hemoglobin genes to improve astaxanthin production in a methanotrophic bacterium Methylomonas sp. Appl Microbiol Biotechnol 74(3):625–633. doi:10.1007/s00253-006-0708-8

    CAS  PubMed  Google Scholar 

  • Teusink B, Passarge J, Reijenga CA, Esgalhado E, van der Weijden CC, Schepper M, Walsh MC, Bakker BM, van Dam K, Westerhoff HV, Snoep JL (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267(17):5313–5329. doi:10.1046/j.1432-1327.2000.01527.x

    CAS  PubMed  Google Scholar 

  • Tufvesson LM, Tufvesson P, Woodley JM, Börjesson P (2013) Life cycle assessment in green chemistry: overview of key parameters and methodological concerns. Int J Life Cycle Assess 18(2):431–444

    CAS  Google Scholar 

  • Ublinskaya AA, Samsonov VV, Mashko SV, Stoynova NV (2012) A PCR-free cloning method for the targeted phi80 Int-mediated integration of any long DNA fragment, bracketed with meganuclease recognition sites, into the Escherichia coli chromosome. J Microbiol Methods 89(3):167–173. doi:10.1016/j.mimet.2012.03.013

    CAS  PubMed  Google Scholar 

  • Ukibe K, Hashida K, Yoshida N, Takagi H (2009) Metabolic engineering of Saccharomyces cerevisiae for astaxanthin production and oxidative stress tolerance. Appl Environ Microbiol 75(22):7205–7211. doi:10.1128/AEM.01249-09

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uribe S, Pena A (1990) Toxicity of allelopathic monoterpene suspensions on yeast dependence on droplet size. J Chem Ecol 16(4):1399–1408. doi:10.1007/bf01021035

    CAS  PubMed  Google Scholar 

  • Uribe S, Ramirez J, Pena A (1985) Effects of beta-pinene on yeast membrane functions. J Bacteriol 161(3):1195–1200

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vadali RV, Fu YC, Bennett GN, San KY (2005) Enhanced lycopene productivity by manipulation of carbon flow to isopentenyl diphosphate in Escherichia coli. Biotechnol Prog 21(5):1558–1561

    CAS  PubMed  Google Scholar 

  • van der Werf M, de Bont JM, Leak D (1997) Opportunities in microbial biotransformation of monoterpenes. In: Berger RG, Babel W, Blanch HW et al (eds) Biotechnology of aroma compounds, vol 55, Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 147–177. doi:10.1007/BFb0102065

    Google Scholar 

  • Van Wegen RJ, Ling Y, Middelberg APJ (1998) Industrial production of polyhydroxyalkanoates using Escherichia coli: an economic analysis. Chem Eng Res Des 76(3):417–426. doi:10.1205/026387698524848

    Google Scholar 

  • Vermue M, Sikkema J, Verheul A, Bakker R, Tramper J (1993) Toxicity of homologous series of organic solvents for the gram-positive bacteria Arthrobacter and Nocardia Sp. and the gram-negative bacteria Acinetobacter and Pseudomonas Sp. Biotechnol Bioeng 42(6):747–758

    CAS  PubMed  Google Scholar 

  • Verwaal R, Wang J, Meijnen J-P, Visser H, Sandmann G, van den Berg JA, van Ooyen AJJ (2007) High-level production of β-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 73(13):4342–4350. doi:10.1128/aem.02759-06

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5(5):283–291. doi:10.1038/Nchembio.158

    CAS  PubMed  Google Scholar 

  • Vickers CE, Blank LM, Kromer JO (2010) Chassis cells for industrial biochemical production. Nat Chem Biol 6(12):875–877. doi:10.1038/Nchembio.484

    CAS  PubMed  Google Scholar 

  • Vickers CE, Klein-Marcuschamer D, Krömer JO (2012) Examining the feasibility of bulk commodity production in Escherichia coli. Biotechnol Lett 34(4):585

    CAS  PubMed  Google Scholar 

  • Vickers C, Bydder S, Zhou Y, Nielsen L (2013) Dual gene expression cassette vectors with antibiotic selection markers for engineering in Saccharomyces cerevisiae. Microb Cell Fact 12(1):96

    PubMed Central  PubMed  Google Scholar 

  • Vickers CE, Bongers M, Liu Q, Delatte T, Bouwmeester H (2014) Metabolic engineering of volatile isoprenoids in plants and microbes. Plant Cell Environ 37(8):1753–75. doi:10.1111/pce.12316

    CAS  PubMed  Google Scholar 

  • Wang X, Yomano LP, Lee JY, York SW, Zheng H, Mullinnix MT, Shanmugam K, Ingram LO (2013) Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals. Proc Natl Acad Sci U S A 110(10):4021–4026

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weber FJ, Ooijkaas LP, Schemen RMW, Hartmans S, De Bont JAM (1993) Adaptation of Pseudomonas putida S12 to high concentrations of styrene and other organic solvents. Appl Environ Microbiol 59(10):3502–3504

    CAS  PubMed Central  PubMed  Google Scholar 

  • Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A, Fickes S, Diola D, Benjamin KR, Keasling JD, Leavell MD, McPhee DJ, Renninger NS, Newman JD, Paddon CJ (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci U S A 109(3):E111–E118. doi:10.1073/pnas.1110740109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whited GM, Feher FJ, Benko DA, Cervin MA, Chotani GK, McAuliffe JC, LaDuca RJ, Ben-Shoshan EA, Sanford KJ (2010) Development of a gas-phase bioprocess for isoprene-monomer production using metabolic pathway engineering. Ind Biotechnol 6(3):152–163. doi:10.1089/ind.2010.6.152

    CAS  Google Scholar 

  • Williams TC, Nielsen LK, Vickers CE (2013) Engineered quorum sensing using pheromone-mediated cell-to-cell communication in Saccharomyces cerevisiae. ACS Synth Biol 2(3):136–149. doi:10.1021/sb300110b

    CAS  PubMed  Google Scholar 

  • Willke T, Vorlop K (2008) Biotransformation of glycerol into 1,3-propanediol. Eur J Lipid Sci Technol 110(9):831–840. doi:10.1002/ejlt.200800057

    CAS  Google Scholar 

  • Willrodt C, David C, Cornelissen S, Bühler B, Julsing MK, Schmid A (2014) Engineering the productivity of recombinant Escherichia coli for limonene formation from glycerol in minimal media. Biotechnol J. doi:10.1002/biot.201400023

    PubMed  Google Scholar 

  • Xue J, Ahring BK (2011) Enhancing isoprene production by genetic modification of the 1-deoxy-d-xylulose-5-phosphate pathway in Bacillus subtilis. Appl Environ Microbiol 77(7):2399–2405. doi:10.1128/AEM.02341-10

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamano S, Ishii T, Nakagawa M, Ikenaga H, Misawa N (1994) Metabolic engineering for production of β-carotene and lycopene in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 58(6):1112–1114

    CAS  PubMed  Google Scholar 

  • Yan GL, Wen KR, Duan CQ (2012) Enhancement of β-carotene production by over-expression of HMG-CoA reductase coupled with addition of ergosterol biosynthesis inhibitors in recombinant Saccharomyces cerevisiae. Curr Microbiol 64(2):159–163. doi:10.1007/s00284-011-0044-9

    CAS  PubMed  Google Scholar 

  • Yang J, Nie Q, Ren M, Feng H, Jiang X, Zheng Y, Liu M, Zhang H, Xian M (2013) Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene. Biotechnol Biofuels 6(1):60

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ye RW, Yao H, Stead K, Wang T, Tao L, Cheng Q, Sharpe PL, Suh W, Nagel E, Arcilla D, Dragotta D, Miller ES (2007) Construction of the astaxanthin biosynthetic pathway in a methanotrophic bacterium Methylomonas sp strain 16a. J Ind Microbiol Biotechnol 34(4):289–299. doi:10.1007/s10295-006-0197-x

    CAS  PubMed  Google Scholar 

  • Yoon SH, Kim JE, Lee SH, Park HM, Choi MS, Kim JY, Lee SH, Shin YC, Keasling J, Kim SW (2007) Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis. Appl Microbiol Biotechnol 74(1):131–139

    CAS  PubMed  Google Scholar 

  • You KM, Rosenfield C-L, Knipple DC (2003) Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl Environ Microbiol 69(3):1499–1503. doi:10.1128/aem.69.3.1499-1503.2003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yuan LZ, Rouvière PE, LaRossa RA, Suh W (2006) Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab Eng 8(1):79–90. doi:10.1016/j.ymben.2005.08.005

    CAS  PubMed  Google Scholar 

  • Zhang C, Chen X, Zou R, Zhou K, Stephanopoulos G, Too HP (2013) Combining genotype improvement and statistical media optimization for isoprenoid production in E. coli. PLoS One 8(10):e75164

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Liu Q, Cao Y, Feng X, Zheng Y, Zou H, Liu H, Yang J, Xian M (2014) Microbial production of sabinene—a new terpene-based precursor of advanced biofuel. Microb Cell Fact 13:20. doi:10.1186/1475-2859-13-20

    PubMed Central  PubMed  Google Scholar 

  • Zhao Y, Yang J, Qin B, Li Y, Sun Y, Su S, Xian M (2011) Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Appl Microbiol Biotechnol 90(6):1915–1922. doi:10.1007/s00253-011-3199-1

    CAS  PubMed  Google Scholar 

  • Zhao J, Xu L, Wang Y, Zhao X, Wang J, Garza E, Manow R, Zhou S (2013a) Homofermentative production of optically pure L-lactic acid from xylose by genetically engineered Escherichia coli B. Microb Cell Fact 12(1):57

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao L, Chang W-C, Xiao Y, Liu H-W, Liu P (2013b) Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu Rev Biochem 82(1):497–530. doi:10.1146/annurev-biochem-052010-100934

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia E. Vickers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vickers, C.E., Behrendorff, J.B.Y.H., Bongers, M., Brennan, T.C.R., Bruschi, M., Nielsen, L.K. (2015). Production of Industrially Relevant Isoprenoid Compounds in Engineered Microbes. In: Kamm, B. (eds) Microorganisms in Biorefineries. Microbiology Monographs, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45209-7_11

Download citation

Publish with us

Policies and ethics