Skip to main content

Microbial Lactone Synthesis Based on Renewable Resources

  • Chapter
  • First Online:

Part of the book series: Microbiology Monographs ((MICROMONO,volume 26))

Abstract

Lactones are important flavor compounds and find frequent application in the production of food and as building blocks in fine chemical synthesis. The microbial production of optically pure lactones benefits from the high selectivity of biocatalysts and therefore simplifies downstream processing. A summary of different processes applying microorganisms or whole cells for the synthesis of different lactones is presented, starting at the cell metabolism and analyzing the hurdles in view of process development. Prominent examples are the synthesis of γ-decalactone using fungal strains, the Baeyer–Villiger oxidation using recombinant whole cells, and the γ-valerolactone synthesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguedo M, Gomes N, Garcia EE, Waché Y, Mota M, Teixeira JA, Belo I (2005) Decalactone production by Yarrowia lipolytica under increased O2 transfer rates. Biotechnol Lett 27(20):1617–1621. doi:10.1007/s10529-005-2517-z

    Article  CAS  PubMed  Google Scholar 

  • Alchihab M, Destain J, Aguedo M, Majad L, Ghalfi H, Wathelet J-P, Thonart P (2009) Production of γ-decalactone by a psychrophilic and a mesophilic strain of the yeast Rhodotorula aurantiaca. Appl Biochem Biotechnol 158(1):41–50. doi:10.1007/s12010-008-8297-x

    Article  CAS  PubMed  Google Scholar 

  • Alchihab M, Aldric J-M, Aguedo M, Destain J, Wathelet J-P, Thonart P (2010) The use of Macronet resins to recover γ-decalactone produced by Rhodotorula aurantiaca from the culture broth. J Ind Microbiol Biotechnol 37(2):167–172. doi:10.1007/s10295-009-0659-z

    Article  CAS  PubMed  Google Scholar 

  • Amaral PFF, Freire MG, Rocha-Leão MHM, Marrucho IM, Coutinho JAP, Coelho MAZ (2008) Optimization of oxygen mass transfer in a multiphase bioreactor with perfluorodecalin as a second liquid phase. Biotechnol Bioeng 99(3):588–598. doi:10.1002/bit.21640

    Article  CAS  PubMed  Google Scholar 

  • Asunción Longo M, Angeles Sanromán M (2006) Production of food aroma compounds: microbial and enzymatic methodologies. Food Technol Biotechnol 44(3):335–353

    Google Scholar 

  • Baldwin CVF, Woodley JM (2006) On oxygen limitation in a whole cell biocatalytic Baeyer–Villiger oxidation process. Biotechnol Bioeng 95(3):362–369. doi:10.1002/bit.20869

    Article  CAS  PubMed  Google Scholar 

  • Bevers LE, Pinkse MW, Verhaert PD, Hagen WR (2009) Oleate hydratase catalyzes the hydration of a nonactivated carbon-carbon bond. J Bacteriol 191(15):5010–5012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Biermann U, Bornscheuer U, Meier MR, Metzger JO, Schäfer HJ (2011) Oils and fats as renewable raw materials in chemistry. Angew Chem Int Ed Engl 50:3854–3871. doi:10.1002/anie.201002767

    Article  CAS  PubMed  Google Scholar 

  • Billerbeck GMD, Menier M, Raguenaud P, Ambid C (2003) Is “Cognac waste” a suitable medium for the production of γ-decalactone by Sporidiobolus salmonicolor? In: Le Quéré J-L, Etiévant P (eds) Flavour research at the dawn of the twenty-first century. Editions Tec & Doc Intercept, Paris, London, [S.l.], pp 377–380

    Google Scholar 

  • Bozell JJ (2010) Connecting biomass and petroleum processing with a chemical bridge. Science 329(5991):522–523

    Article  CAS  PubMed  Google Scholar 

  • Braga A, Gomes N, Belo I (2012) Lipase induction in Yarrowia lipolytica for castor oil hydrolysis and its effect on γ-decalactone production. J Am Oil Chem Soc 89(6):1041–1047. doi:10.1007/s11746-011-1987-5

    Article  CAS  Google Scholar 

  • Broun P, Shanklin J, Whittle E, Somerville C (1998) Catalytic plasticity of fatty acid modification enzymes underlying chemical diversity of plant lipids. Science 282(5392):1315–1317

    Article  CAS  PubMed  Google Scholar 

  • Chang DE, Jung HC, Rhee JS, Pan JG (1999) Homofermentative production of D- or L-lactate in metabolically engineered Escherichia coli RR1. Appl Environ Microbiol 65(4):1384–1389

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davis EN, Wallen LL, Goodwin JC, Rohwedde WK, Rhodes RA (1969) Microbial Hydration of cis-9-alkenoic acids. Lipids 4(5):356–362. doi:10.1007/bf02531006

    Article  CAS  PubMed  Google Scholar 

  • Doi Y, Steinbüchel A (2002) Polyesters III: applications and commercial products. In: Doi Y, Steinbüchel A (eds) Biopolymers, vol 4. Wiley-VCH, Weinheim

    Google Scholar 

  • Doig SD, O’Sullivan LM, Patel S, Ward JM, Woodley JM (2001) Large scale production of cyclohexanone monooxygenase from Escherichia coli TOP10 pQR239. Enzyme Microb Technol 28(2–3):265–274. doi:10.1016/s0141-0229(00)00320-3

    CAS  PubMed  Google Scholar 

  • Doig SD, Avenell PJ, Bird PA, Gallati P, Lander KS, Lye GJ, Wohlgemuth R, Woodley JM (2002) Reactor operation and scale-up of whole cell Baeyer–Villiger catalyzed lactone synthesis. Biotechnol Prog 18(5):1039–1046. doi:10.1021/bp0200954

    Article  CAS  PubMed  Google Scholar 

  • Doig SD, Simpson H, Alphand V, Furstoss R, Woodley JM (2003) Characterization of a recombinant Escherichia coli TOP10 [pQR239] whole-cell biocatalyst for stereoselective Baeyer–Villiger oxidations. Enzyme Microb Technol 32(3–4):347–355. doi:10.1016/s0141-0229(02)00317-4

    Article  CAS  Google Scholar 

  • Dufossé L, Souchon I, Feron G, Latrasse A, Spinnler HE (1999) In situ detoxification of the fermentation medium during γ-decalactone production with the yeast Sporidiobolus salmonicolor. Biotechnol Prog 15(1):135–139. doi:10.1021/bp980113a

    Article  PubMed  Google Scholar 

  • Edris AE, Girgis BS, Fadel HHM (2003) Recovery of volatile aroma components from aqueous waste streams using an activated carbon column. Food Chem 82(2):195–202. doi:10.1016/s0308-8146(02)00503-4

    Article  CAS  Google Scholar 

  • Efe C, Straathof AJJ, van der Wielen LAM (2008) Options for biochemical production of 4-hydroxybutyrate and its lactone as a substitute for petrochemical production. Biotechnol Bioeng 99(6):1392–1406. doi:10.1002/bit.21709

    Article  CAS  PubMed  Google Scholar 

  • Fantin G, Giovannini PP, Guerrini A, Maietti S, Medici A, Pedrini P (2006) Enantioselective Baeyer–Villiger oxidation of Bicyclo[3.2.0]hept-2-en-6-one with fungi: optimization of biotransformation and use of TiO2 as support of cell growth. Biotechnol Lett 28(11):805–810. doi:10.1007/s10529-006-9000-3

    Article  CAS  PubMed  Google Scholar 

  • Farbood MI, Willis BJ (1985) Production of gamma-decalactone. US Patent No 4560656

    Google Scholar 

  • Fickers P, Benetti P, Wache Y, Marty A, Mauersberger S, Smit M, Nicaud J (2005) Hydrophobic substrate utilisation by the yeast, and its potential applications. FEMS Yeast Res 5(6–7):527–543. doi:10.1016/j.femsyr.2004.09.004

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo AC, Miguel MG, Gounaris Y (2010) Biotechnology for the production of essential oils, flavours and volatile isolates. A review. Flavour Fragr J 25(5):367–386. doi:10.1002/ffj.1996

    Article  Google Scholar 

  • Füchtenbusch B, Wullbrandt D, Steinbüchel A (2000) Production of polyhydroxyalkanoic acids by Ralstonia eutropha and Pseudomonas oleovorans from an oil remaining from biotechnological rhamnose production. Appl Microbiol Biotechnol 53(2):167–172

    Article  PubMed  Google Scholar 

  • Fujii M, Akita H, Ida Y, Nakagawa T, Nakamura K (2007) Control of chemoselectivity of microbial reaction with resin adsorbent: enhancement of Baeyer–Villiger oxidation over reduction. Appl Microbiol Biotechnol 77(1):45–51. doi:10.1007/s00253-007-1146-y

    Article  CAS  PubMed  Google Scholar 

  • Gatfield IL (1995) Gamma-decalactone preparation with high stereospecificity. German Patent No 4401388A1

    Google Scholar 

  • Geilen FMA, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W (2010) Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system. Angew Chem Int Ed Engl 49(32):5510–5514. doi:10.1002/anie.201002060

    Article  CAS  PubMed  Google Scholar 

  • Gocho S, Tabogami N, Inagaki M, Kawabata C, Komai T (1995) Biotransformation of oleic acid to optically active γ-dodecalactone. Biosci Biotechnol Biochem 59(8):1571–1572

    Article  CAS  Google Scholar 

  • Gocho S, Kitazawa R, Komal T (1998) Process for the production of delta-decalactone. European Patent No 0822259B1

    Google Scholar 

  • Gomes N, Aguedo M, Teixeira J, Belo I (2007) Oxygen mass transfer in a biphasic medium: Influence on the biotransformation of methyl ricinoleate into γ-decalactone by the yeast Yarrowia lipolytica. Biochem Eng J 35(3):380–386. doi:10.1016/j.bej.2007.02.002

    Article  CAS  Google Scholar 

  • Gomes N, Teixeira JA, Belo I (2010) The use of methyl ricinoleate in lactone production by Yarrowia lipolytica: aspects of bioprocess operation that influence the overall performance. Biocatal Biotransform 28(4):227–234

    Article  CAS  Google Scholar 

  • Gomes N, Teixeira JA, Belo I (2011a) Empirical modelling as an experimental approach to optimize lactone production. Catal Sci Technol 1(1):86–92. doi:10.1039/c0cy00017e

    Article  CAS  Google Scholar 

  • Gomes N, Wache Y, Teixeira JA, Belo I (2011b) Oil-in-water emulsions characterization by laser granulometry and impact on γ-decalactone production in Yarrowia lipolytica. Biotechnol Lett 33(8):1601–1606. doi:10.1007/s10529-011-0593-9

    Article  CAS  PubMed  Google Scholar 

  • Gomes N, Teixeira JA, Belo I (2012) Fed-batch versus batch cultures of Yarrowia lipolytica for γ-decalactone production from methyl ricinoleate. Biotechnol Lett 34(4):649–654. doi:10.1007/s10529-011-0824-0

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Díaz D, Gomes N, Teixeira JA, Belo I (2009) Oxygen mass transfer to emulsions in a bubble column contactor. Chem Eng J 152(2–3):354–360. doi:10.1016/j.cej.2009.04.059

    Article  Google Scholar 

  • Goswami D, Basu JK, De S (2013) Lipase applications in oil hydrolysis with a case study on castor oil: a review. Crit Rev Biotechnol 33(1):81–96. doi:10.3109/07388551.2012.672319

    Article  CAS  PubMed  Google Scholar 

  • Götz K, Liese A, Ansorge-Schumacher M, Hilterhaus L (2013) A chemo-enzymatic route to synthesize (S)-γ-valerolactone from levulinic acid. Appl Microbiol Biotechnol 97(9):3865–3873

    Article  PubMed  Google Scholar 

  • Guo Y, Song H, Wang Z, Ding Y (2012) Expression of POX2 gene and disruption of POX3 genes in the industrial Yarrowia lipolytica on the γ-decalactone production. Microbiol Res 167(4):246–252

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez M-C, Furstoss R, Alphand V (2005) Microbiological transformations 60. Enantioconvergent Baeyer–Villiger oxidation via a combined whole cells and ionic exchange resin-catalysed dynamic kinetic resolution process. Adv Synth Catal 347(7–8):1051–1059. doi:10.1002/adsc.200505048

    Article  Google Scholar 

  • Heo S-H, Kim BS (2009) Production and recovery of oxygenated fatty acids from oleic acid by Flavobacterium sp. strain DS5. Hwahak Konghak 47:620–623

    CAS  Google Scholar 

  • Hilker I, Alphand V, Wohlgemuth R, Furstoss R (2004) Microbial transformations, 56. Preparative scale asymmetric Baeyer–Villiger oxidation using a highly productive “two-in-one” resin-based in situ SFPR concept. Adv Synth Catal 346(23):203–214. doi:10.1002/adsc.200303183

    Article  CAS  Google Scholar 

  • Hilker I, Wohlgemuth R, Alphand V, Furstoss R (2005) Microbial transformations 59: first kilogram scale asymmetric microbial Baeyer–Villiger oxidation with optimized productivity using a resin-based in situ SFPR strategy. Biotechnol Bioeng 92(6):702–710. doi:10.1002/bit.20636

    Article  CAS  PubMed  Google Scholar 

  • Hilker I, Baldwin C, Alphand V, Furstoss R, Woodley J, Wohlgemuth R (2006) On the influence of oxygen and cell concentration in an SFPR whole cell biocatalytic Baeyer–Villiger oxidation process. Biotechnol Bioeng 93(6):1138–1144. doi:10.1002/bit.20829

    Article  CAS  PubMed  Google Scholar 

  • Horvath IT, Mehdi H, Fabos V, Boda L, Mika LT (2008) gamma-Valerolactone—a sustainable liquid for energy and carbon-based chemicals. Green Chem 10(2):238–242. doi:10.1039/b712863k

    Article  CAS  Google Scholar 

  • Ismadji S, Bhatia SK (2000) Adsorption of flavour esters on granular activated carbon. Can J Chem Eng 78(5):892–901. doi:10.1002/cjce.5450780506

    Article  CAS  Google Scholar 

  • Jang HC, Yang EJ (2011) Application of antifungal compound. Korean Patent No 2011125118A

    Google Scholar 

  • Jin J, Hanefeld U (2011) The selective addition of water to C=C bonds; enzymes are the best chemists. Chem Commum 47:2502–2510. doi:10.1039/c0cc04153j

    Article  CAS  Google Scholar 

  • Joo YC, Seo ES, Kim YS, Kim KR, Park JB, Oh DK (2012) Production of 10-hydroxystearic acid from oleic acid by whole cells of recombinant Escherichia coli containing oleate hydratase from Stenotrophomonas maltophilia. J Biotechnol 158(1–2):17–23. doi:10.1016/j.jbiotec.2012.01.002

    Article  CAS  PubMed  Google Scholar 

  • Kamzolova S, Shishkanova N, Morgunov I, Finogenova T (2003) Oxygen requirements for growth and citric acid production of Yarrowia lipolytica. FEMS Yeast Res 3(2):217–222. doi:10.1016/s1567-1356(02)00188-5

    Article  CAS  PubMed  Google Scholar 

  • Kapfer G-F, Berger RG, Drawert F (1989) Production of 4-decanolide by semicontinuous fermentation of Tyromyces sambuceus. Biotechnol Lett 11(8):561–566. doi:10.1007/bf01040036

    Article  CAS  Google Scholar 

  • Kelly DR, Wan PWH, Tang J (2001) Flavin monooxygenases—uses as catalysts for Baeyer–Villiger ring expansion and heteroatom oxidation. In: Rehm HJ, Reed G (eds) Biotechnology set. Wiley-VCH Verlag GmbH, Weinheim, pp 536–587. doi:10.1002/9783527620999.ch11h

    Chapter  Google Scholar 

  • Kenji O, Mieko C, Fumi I, Tsutomu H, Hideshi Y (2002) Production of γ-lactones by the brown-rot basidiomycete Piptoporus soloniensis. J Biosci Bioeng 94(2):182–185. doi:10.1016/s1389-1723(02)80142-6

    Article  Google Scholar 

  • Kim BN, Joo YC, Kim YS, Kim KR, Oh DK (2012) Production of 10-hydroxystearic acid from oleic acid and olive oil hydrolyzate by an oleate hydratase from Lysinibacillus fusiformis. Appl Microbiol Biotechnol 95(4):929–937. doi:10.1007/s00253-011-3805-2

    Article  CAS  PubMed  Google Scholar 

  • Kongo JM (ed) (2013) Lactic acid bacteria—R & D for food, health and livestock purposes, InTech, Rijeka, Croatia. doi:10.5772/2825; ISBN 978-953-51-0955-6

    Google Scholar 

  • Kümin B, Münch T (1998) Microbiological process for producing gamma-decalactone. US patent No 5849551A

    Google Scholar 

  • Kuo TM, Levinson WE (2006) Biocatalytic production of 10-hydroxystearic acid, 10-ketostearic acid, and their primary fatty amides. Agriculture 83(8):671–675

    CAS  Google Scholar 

  • Kuo TM, Lanser AC, Nakamura LK, Hou CT (2000) Production of 10-ketostearic acid and 10-hydroxystearic acid by strains of Sphingobacterium thalpophilum isolated from composted manure. Curr Microbiol 40:105–109. doi:10.1007/s002849910020

    Article  CAS  PubMed  Google Scholar 

  • Kuo TM, Nakamura LK, Lanser AC (2002) Conversion of fatty acids by Bacillus sphaericus-like organisms. Curr Microbiol 45:265–271. doi:10.1007/s00284-002-3748-z

    Article  CAS  PubMed  Google Scholar 

  • Lange JP, Price R, Ayoub PM, Louirs J, Petrus L, Clarke L, Gosselink H (2010) Valeric biofuels: a platform of cellulosic transportation fuels. Angew Chem Int Ed Engl 49:4479–4483

    Article  CAS  PubMed  Google Scholar 

  • Langeveld H, Meeusen M, Sanders J (2012) The biobased economy: biofuels, materials, and chemicals in the post-oil era. Routledge, Abingdon

    Google Scholar 

  • Laufenberg G, Rosato P, Kunz B (2004) Adding value to vegetable waste: oil press cakes as substrates for microbial decalactone production. Eur J Org Chem 106(4):207–217. doi:10.1002/ejlt.200300898

    CAS  Google Scholar 

  • Lee S-L, Lin S-J, Chou C-C (1995) Growth of and production of γ-decalactone by Sporobolomyces odorus in jar fermentors as affected by pH, aeration and fed-batch technique. J Ferment Bioeng 80(2):195–199. doi:10.1016/0922-338x(95)93219-a

    Article  CAS  Google Scholar 

  • Lee S-L, Cheng H-Y, Chen W-C, Chou C-C (1998) Production of γ-decalactone from ricinoleic acid by immobilized cells of Sporidiobolus salmonicolor. Process Biochem 33(4):453–459. doi:10.1016/s0032-9592(98)00013-2

    Article  CAS  Google Scholar 

  • Lin S-J, Lee S-L, Chou C-C (1996) Effects of various fatty acid components of castor oil on the growth and production of γ-decalactone by Sporobolomyces odorus. J Ferment Bioeng 82(1):42–45. doi:10.1016/0922-338x(96)89452-9

    Article  CAS  Google Scholar 

  • Martin CH, Prather KLJ (2009) High-titer production of monomeric hydroxyvalerates from levulinic acid in Pseudomonas putida. J Biotechnol 139(1):61–67

    Article  CAS  PubMed  Google Scholar 

  • Martin CH, Wu DY, Prather KLJ (2010) Integrated bioprocessing for the pH-dependent production of 4-valerolactone from levulinate in pseudomonas putida KT2440. Appl Environ Microbiol 76(2):417–424. doi:10.1128/aem.01769-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mase K, Abe T, Yamamoto Y, Takashima H, Shimo T, Katayama Y, Shigehara A, Masai E, Ohara M, Nakamura M, Otsuka Y (2012) A fermentative production of muconolactone, β-ketoadipic acid, and/or levulinic acid by Pseudomonas putida transformants. Japanese Patent No 2012000059A

    Google Scholar 

  • Medeiros ABP, Pandey A, Vandenberghe LPS, Pastore GM, Soccol CR (2006) Production and recovery of aroma compounds produced by solid-state fermentation using different adsorbents. Food Technol Biotechnol 44(1):47–51

    CAS  Google Scholar 

  • Mihovilovic MD (2012) Baeyer–Villiger Oxidations. In: Drauz K, Gröger H, May O (eds) Enzyme catalysis in organic synthesis, 3rd edn. WiVCH, Weinheim, pp 1439–1485

    Chapter  Google Scholar 

  • Mihovilovic MD, Müller B, Kayser MM, Stewart JD, Fröhlich J, Stanetty P, Spreitzer H (2001) Baeyer–Villiger oxidations of representative heterocyclic ketones by whole cells of engineered Escherichia coli expressing cyclohexanone monooxygenase. J Mol Catal B Enzym 11(4–6):349–353. doi:10.1016/s1381-1177(00)00021-7

    Article  CAS  Google Scholar 

  • Mihovilovic MD, Müller B, Stanetty P (2002) Monooxygenase-mediated Baeyer−Villiger oxidations. Eur J Org Chem 2002(22):3711–3730. doi:10.1002/1099-0690(200211)2002:22<3711::aid-ejoc3711>3.0.co;2-5

    Article  Google Scholar 

  • Mitsuhashi K, Iimori M (2004) Lactones manufacture with Candida sorbophila. World Patent No 2004003213A1

    Google Scholar 

  • Mitsuhashi K, Limori M (2006) Method for producing lactone. US Patent No 7129067B2

    Google Scholar 

  • Moradi H, Asadollahi MA, Nahvi I (2013) Improved γ-decalactone production from castor oil by fed-batch cultivation of Yarrowia lipolytica. Biocatal Agric Biotechnol 2(1):64–68. doi:10.1016/j.bcab.2012.11.001

    Google Scholar 

  • Neto RS, Pastore GM, Macedo GA (2004) Biocatalysis and biotransformation producing gamma-decalactone. J Food Sci 69(9):C677–C680

    Article  CAS  Google Scholar 

  • Ottolina G, de Gonzalo G, Carrea G, Danieli B (2005) Enzymatic Baeyer–Villiger oxidation of bicyclic diketones. Adv Synth Catal 347(7–8):1035–1040. doi:10.1002/adsc.200505027

    Article  CAS  Google Scholar 

  • Palkovits R (2010) Pentenoic acid pathways for cellulosic biofuels. Angew Chem Int Ed Engl 49:4336–4338. doi:10.1002/anie.201002061

    Article  CAS  PubMed  Google Scholar 

  • Pichersky E (1998) Use of linalool synthase in genetic engineering of scent production. US patent No 5849526A

    Google Scholar 

  • Rabenhorst J, Gatfield I (2002) Method of producing γ-decalactone using Yarrowia lipolytica strain HR 145 (DSM 12397). US patent No 6451565B1

    Google Scholar 

  • Romero-Guido C, Belo I, Ta TMN, Cao-Hoang L, Alchihab M, Gomes N, Thonart P, Teixeira JA, Destain J, Waché Y (2011) Biochemistry of lactone formation in yeast and fungi and its utilisation for the production of flavour and fragrance compounds. Appl Microbiol Biotechnol 89(3):535–547

    Article  CAS  PubMed  Google Scholar 

  • Rosberg-Cody E, Liavonchanka A, Göbel C, Ross RP, O’Sullivan O, Fitzgerald GF, Feussner I, Stanton C (2011) Myosin-cross-reactive antigen (MCRA) protein from Bifidobacterium breve is a FAD-dependent fatty acid hydratase which has a function in stress protection. BMC Biochem 12(1):9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schrewe M, Julsing MK, Bühler B, Schmid A (2013) Whole-cell biocatalysis for selective and productive C–O functional group introduction and modification. Chem Soc Rev. doi:10.1039/C1033CS60011D

    PubMed  Google Scholar 

  • Seo M-H, Kim K-R, Oh D-K (2013) Production of a novel compound, 10,12-dihydroxystearic acid from ricinoleic acid by an oleate hydratase from Lysinibacillus fusiformis. Appl Microbiol Biotechnol 97:8987–8995. doi:10.1007/s00253-013-4728-x

    Article  CAS  PubMed  Google Scholar 

  • Serrano-Carreon L, Flores C, Galindo E (1997) γ-Decalactone production by Trichoderma harzianum in stirred bioreactors. Biotechnol Prog 13(2):205–208. doi:10.1021/bp960096u

    Article  CAS  Google Scholar 

  • Shiloach J, Fass R (2005) Growing E. coli to high cell density—a historical perspective on method development. Biotechnol Adv 23(5):345–357. doi:10.1016/j.biotechadv.2005.04.004

    Article  CAS  PubMed  Google Scholar 

  • Souchon I, Spinnler HE, Dufosse L, Voilley A (1998) Trapping of gamma-decalactone by adsorption on hydrophobic sorbents: application to the bioconversion of methyl ricinoleate by the yeast Sporidiobolus salmonicolor. Biotechnol Tech 12(2):109–113. doi:10.1023/a:1008880231677

    Article  CAS  Google Scholar 

  • Stewart JD, Reed KW, Martinez CA, Zhu J, Chen G, Kayser MM (1998) Recombinant Baker’s Yeast as a whole-cell catalyst for asymmetric Baeyer−Villiger oxidations. J Am Chem Soc 120(15):3541–3548. doi:10.1021/ja972942i

    Article  CAS  Google Scholar 

  • Turfitt GE (1948) The microbial degradation of steroids. 4. Fission of the steroid molecule. Biochem J 42(3):376–383

    CAS  PubMed Central  Google Scholar 

  • Van WJ, Anderson E, Licata J, Sparks KA, Farmer WR, Mirley C, Bickmeier JA, D’Ambruoso A, Skraly F, Ramseier TM, Sivasubramanian MS, Peoples OP, Shabtai Y (2012) Biorefinery process for tetrahydrofuran production. World patent No 2012170793A1

    Google Scholar 

  • Vandamme EJ, Soetaert W (2002) Bioflavours and fragrances via fermentation and biocatalysis. J Chem Technol Biotechnol 77(12):1323–1332

    Article  CAS  Google Scholar 

  • Volkov A, Liavonchanka A, Kamneva O, Fiedler T, Goebel C, Kreikemeyer B, Feussner I (2010) Myosin cross-reactive antigen of Streptococcus pyogenes M49 encodes a fatty acid double bond hydratase that plays a role in oleic acid detoxification and bacterial virulence. J Biol Chem 285(14):10353–10361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wache Y, Bergmark K, Courthaudon J-L, Aguedo M, Nicaud J-M, Belin J-M (2000) Medium-size droplets of methyl ricinoleate are reduced by cell-surface activity in the gamma-decalactone production by Yarrowia lipolytica. Lett Appl Microbiol 30(3):183–187. doi:10.1046/j.1472-765x.2000.00678.x

    Article  CAS  PubMed  Google Scholar 

  • Wache Y, Aguedo M, Choquet A, Gatfield IL, Nicaud J-M, Belin J-M (2001) Role of beta-oxidation enzymes in gamma-decalactone production by the yeast Yarrowia lipolytica. Appl Environ Microbiol 67(12):5700–5704. doi:10.1128/aem.67.12.5700-5704.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walton AZ, Stewart JD (2002) An efficient enzymatic Baeyer–Villiger oxidation by engineered Escherichia coli cells under non-growing conditions. Biotechnol Prog 18(2):262–268. doi:10.1021/bp010177c

    Article  CAS  PubMed  Google Scholar 

  • Yeon YJ, Park H-Y, Yoo YJ (2013) Enzymatic reduction of levulinic acid by engineering the substrate specificity of 3-hydroxybutyrate dehydrogenase. Bioresour Technol 137:377–380

    Article  Google Scholar 

  • Zanghellini AL (2012) Fermentation route for the production of levulinic acid, levulinate esters, valerolactone, and derivatives thereof. World patent No 2012030860A1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Hilterhaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kourist, R., Hilterhaus, L. (2015). Microbial Lactone Synthesis Based on Renewable Resources. In: Kamm, B. (eds) Microorganisms in Biorefineries. Microbiology Monographs, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45209-7_10

Download citation

Publish with us

Policies and ethics