Skip to main content

Calcite and Aragonite Saturation States of the Red Sea and Biogeochemical Impacts of Excess Carbon Dioxide

  • Chapter
  • First Online:
The Red Sea

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

This chapter discusses the saturation states of the Red Sea with respect to both calcite and aragonite and their possible biogeochemical impacts as a result of ocean carbonate chemistry changes. The saturation levels of the Red Sea surface waters are several-fold supersaturated with respect to calcite and aragonite; they range from 634 to 721 % and from 446 to 488 %, respectively. The saturation levels of the deep waters range from 256 to 341 % with respect to calcite and from 177 to 230 % with respect to aragonite. They generally increase from south to the north. The lowest values of seawater supersaturation with respect to both calcite and aragonite were found at water depths >1,400 m. Changes in the seawater acid–base chemistry due to excess CO2 emission and oceanic acidification affect the saturation states of calcium carbonate. Based on reported results of the excess CO2 sink in the northern part of the Red Sea (Krumgalz et al. 1990), the estimated degree of saturation with respect to calcite and aragonite was higher by 1.9 ± 0.4 % at >200 m, 4.9 ± 0.7 % at 200–600 m, and 2.5 ± 0.1 % at >600 m in preindustrial times than in 1982. A projected drop in pH by a 0.1 unit decreases the saturation level by a factor of 1.2, whereas a drop by 0.4 pH unit decreases the saturation level by a factor of 2.1. These changes in saturation levels will have major impacts on the calcifying pelagic and benthic organisms as well as the distribution and depth of coral reefs. Low magnesian calcite and pure calcite are expected to be the dominant carbonate minerals at these low supersaturation levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Anbaawy MIH (1993) Reefal facies and diagenesis of pleistocene sediments in Kamaran Island, Southern Red Sea, Republic of Yemen. Egypt J Geol 37:137–151

    Google Scholar 

  • Andersson AJ, Mackenzie FT, Bates NT (2008) Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers. Mar Ecol Prog Ser 373:265–273

    Google Scholar 

  • Anderson L, Dyrssen D (1994) Alkalinity and total carbonate in the Arabian Sea. Carbonate depletion in the Red Sea and Persian Gulf. Mar Chem 47:195–202

    Google Scholar 

  • Anthony KR, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci 105(45):17442–17446

    Google Scholar 

  • Barton A, Hales B, Waldbusser GG, Langdon C, Feely RA (2012) The pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: implications for near-term ocean acidification effects. Limnol Oceanogr 57(3):698–710

    Google Scholar 

  • Bartov Y, Steinitz G, Eyl M, Eyal Y (1980) Sinistral movement along the Gulf of Aqaba—its age and relation to the opening of the Red Sea. Nature 285:220–222

    Google Scholar 

  • Bates NR (2007) Interannual variability of oceanic CO2 and biogeochemical properties in the Western North Atlantic subtropical gyre. Deep Sea Res II 48:1507–1528

    Google Scholar 

  • Beauverger C, Brunet C, Poisson A (1985) Terres Australes et Antartiques Francaises. Le rapports des Campagnes a la mer. No. 82-04

    Google Scholar 

  • Behairy AKA, Sheppard CRC, El-Sayed MK (1992) A review of the Geology of coral reefs in the Red Sea. UNEP Regional Seas Reports and Studies No. 152, 41 pp

    Google Scholar 

  • Berner RA (1976) Equilibrium, kinetics and the precipitation of magnesian calcite from seawater. Am J Sci 278:1435–1477

    Google Scholar 

  • Braithwaite CJR (1987) Geology and palaeogeography of the Red Sea region. In: Edwards AJ, Head SM (eds) Red Sea. Pergamon Press, Oxford, pp 22–44

    Google Scholar 

  • Broecker WS, Takahashi T (1966) Calcium carbonate precipitation on the Bahama Banks. J Geophys Res 71:1575–1602

    Google Scholar 

  • Broecker WS, Takahashi T, Simpson HJ, Peng TH (1979) Fate of fossil fuel carbon dioxide and global carbon cycle. Science 206:409–418

    Google Scholar 

  • Broecker W, Langdon C, Takahashi T, Peng T-S (2001) Factors controlling the rate of CaCO3 precipitation on Grand Bahama Bank. Glob Biogeochem Cycles 15:589–596

    Google Scholar 

  • Budd DA (1988) Aragonite-to-calcite transformation during fresh-water diagenesis of carbonates: insights from pore-water chemistry. Geol Soc Am Bull 100:1260–1270

    Google Scholar 

  • Burton EA, Walter ML (1987) Relative precipitation rates of aragonite and Mg calcite from seawater: temperature or carbonate ion control? Geology 15:111–114

    Google Scholar 

  • Cantin NE, Cohen AL, Karnauskas KB, Tarrant AM, McCorkle DC (2010) Ocean warming slows coral growth in the central Red Sea. Science 329:322–325

    Google Scholar 

  • Cember RP (1988) On the sources, formation, and circulation of Red Sea deep water. J Geophys Res 93:8175–8191

    Google Scholar 

  • Chave KE (1954a) Aspects of biochemistry of magnesium 1. Calcareous and marine organism. J Geol 62:266–283

    Google Scholar 

  • Chave KE (1954b) Aspects of biochemistry of magnesium 2. Calcareous sediments and rocks. J Geol 62:587–599

    Google Scholar 

  • Chen CTA, Wang SL, Chou WC, Sheu DD (2006) Carbonate chemistry and projected future changes in pH and CaCO3 saturation state of the South China Sea. Mar Chem 101:277–305

    Google Scholar 

  • Clark D, Lamare M, Barker M (2009) Response of sea urchin pluteus larvae (Echinodermata: Echinoidea) to reduced seawater pH: a comparison among a tropical, temperate, and a polar species. Mar Biol 156(6):1125–1137

    Google Scholar 

  • Cloud PE (1962) Behavior of calcium carbonate in seawater. Geochim Cosmochim Acta 26:867–887

    Google Scholar 

  • Comeau S, Gorsky G, Jeffree R, Teyssié JL, Gattuso J-P (2009) Impact of ocean acidification on a key arctic pelagic mollusc (Limacina helicina). Biogeosciences 6(9):1877–1882

    Google Scholar 

  • Couper A (ed) (1983) The time atlas of the oceans. Time Books, London, 272 pp

    Google Scholar 

  • Culkin F, Cox RA (1966) Sodium, potassium, magnesium, calcium and strontium in seawater. Deep Sea Res 13:789–804

    Google Scholar 

  • Dickson AG (1990) Thermodynamics of the dissociation of boric acid in synthetic sea water from 273.15 to 298.15K. Deep-Sea Res 37:755–766

    Google Scholar 

  • Dickson AG, Riley JP (1979) The estimation of acid dissociation constants in seawater from potentiometric titrations with strong base. 1. The ion product of water-Kw. Mar Chem 7:89–99

    Google Scholar 

  • DOE (1994) Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water; version 2. In: Dickson AG, Goyet C (eds) ORNL/CDIAC-74

    Google Scholar 

  • Dore JE, Lukas R, Sadler DW, Chruch MJ, Karl DM (2009) Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc Nat Acad Sci USA 106:12235–12240

    Google Scholar 

  • Edwards AJ (1987) Climate and oceanography. In: Edwards AJ, Head SM (eds) Red Sea: key environments. Pergamon Press, Oxford, pp 383–404

    Google Scholar 

  • Edwards FJ, Head SM (eds) (1987) Red Sea: key environments. Pergamon Press, Oxford, 441 pp

    Google Scholar 

  • Eisler R (2012) Ocean acidification. A comprehensive overview. CRC Press, Taylor and Francis, Jersey, and Enfield, New Hampshire, 252 pp

    Google Scholar 

  • El-Anbaawy MIH, Al-aawah MAH, Al-Thour KA, Tucker ME (1992) Miocene evaporates of the Red Sea rift, Yemen Republic: sedimentology of Salif halite. Sed Geol 81:1–71

    Google Scholar 

  • Feely RA, Chen CTA (1982) The effect of excess CO2 on the calculated calcite and aragonite saturation horizons in the northeast Pacific. Geophys Res Lett 9(11):1294–1297

    Google Scholar 

  • Feely RA, Byrne RH, Betzer PR, Gendron JF, Acker JG (1984) Factors influencing the degree of saturation of the surface and intermediate waters of the north pacific ocean with respect to aragonite. J Geophys Res 89:10631–10640

    Google Scholar 

  • Feely RA, Byrne RH, Acker JG, Betzer PR, Chen CTA, Gendron JF, Lamb MF (1988) Winter-summer variation of calcite and aragonite saturation in northeast pacific. Mar Chem 25:227–241

    Google Scholar 

  • Freund R (1970) Plate tectonics of the Red Sea and East Africa. Nature 228:453

    Google Scholar 

  • Friedman GM (1985) Gulf of Elat (Aqaba). Geological and sedimentological framework. In: Friedman GM, Krumbein WE (eds) Hypersaline ecosystems, the Gavish Sabkha. Springer, Berlin, pp 39–71

    Google Scholar 

  • Gattuso J-P, Frankignoulle M, Bourge I, Romaine S, Buddemeier RW (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Global Planet Change 18(1–2):37–46

    Google Scholar 

  • Gattuso J-P, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183

    Google Scholar 

  • Gaulier JM, Le Pichon X, Lyberis N, Avedik F, Geli L, Moretti I, Deschamps A, Salah H (1988) Seismic study of the crust of the northern Red Sea and Gulf of Suez. Tectonophysics 153:55–88

    Google Scholar 

  • Gazeau F, Quiblier C, Jansen JM, Gattuso J-P, Middelburg JJ, Heip CHR (2007) Impact of elevated CO2 on shellfish calcification. Geophys Res Lett 34:L07603

    Google Scholar 

  • Girdler RW, Darracott BW (1972) African poles of rotation. Comments Earth Sci Geophys 2:131–138

    Google Scholar 

  • Girdler RW, Styles P (1974) Two stage seafloor-spreading. Nature 247:7–11

    Google Scholar 

  • Gonzalez-Davila M, Santana-Casiano JM, Gonzalez-Davila EF (2007) Interannual variability of the upper ocean carbon cycle in the northeast Atlantic Ocean. Geophys Res Lett 34, L07608. doi:10.1029/2006GL028145

  • Green MA, Waldbusser GG, Reilly SL, Emerson K, O’Donnel S (2009) Death by dissolution: sediment saturation state as a mortality factor for juvenile bivalves. Limnol Oceanogr 54:1037–1047

    Google Scholar 

  • Green MA, Waldbusser GG, Hubazc L, Cathcart E, Hall J (2013) Carbonate mineral saturation state as the recruitment cue for settling bivalves in marine muds. Estuaries Coasts 36:18–27

    Google Scholar 

  • Gvirtzman G, Buchbinder B, Sneh A, Nir Y, Friedman GM (1977) Morphology of the Red Sea fringing reefs: a result of the erosional pattern of the last-glacial low-stand sea level and the following Holocene recolonization. Mem Bur Rech Geol Min 89:480–491

    Google Scholar 

  • Hales B, Emerson SR (1997) Calcite dissolution in sediments of the Ceara Rise: in situ measurements of porewater O2, pH, and CO2(aq). Geochim Cosmochim Acta 61:501–514

    Google Scholar 

  • Hansson I (1973) A new set of acidity constants for carbonic acid and boric acid in seawater. Deep-Sea Res 20:461–478

    Google Scholar 

  • Head SM (1987) In: Edwards AJ, Head SM (eds) Key Environment: Red Sea. Pergamon Press, Oxford

    Google Scholar 

  • Heath GR, Culberson CH (1970) Calcite degree of saturation, rate of dissolution and the compensation depth in the deep oceans. Geol Soc Am Bull 81:3157–3160

    Google Scholar 

  • Jokiel PL, Rodgers KS, Kuffner IB, Andersson AJ, Cox EF, Mackenzie FT (2008) Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27(3):473–483

    Google Scholar 

  • Jones DA et al (1987) Littoral and shallow subtidal environment. In: Edwards AJ, Head SM (eds) Red Sea: key environments. Pergamon Press, Oxford, pp 383–404

    Google Scholar 

  • Kitano Y (1964) On factors influencing the polymorphic crystallization on calcium carbonates found in marine biological system. In: Miyake Y, Koyama T (eds) Recent researches in the field of hydrosphere, atmosphere and nuclear chemistry. Tokyo

    Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120

    Google Scholar 

  • Kroeker KJ, Micheli F, Gambi MC, Martz TR (2011) Divergent ecosystem responses within a benthic marine community to ocean acidification. Proc Natl Acad Sci 108(35):14515–14520

    Google Scholar 

  • Krumgalz BS, Erez J, Chen CTA (1990) Anthropogenic CO2 penetration in the northern Red Sea and in the Gulf of Elat (Aqaba). Oceanol Acta 13(3):283–290

    Google Scholar 

  • Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res 110:C09S07

    Google Scholar 

  • Le Pichon X, Francheteau J (1978) A plate tectonics analysis of the Red Sea-Gulf of Aden area. Tectonophysics 46:369–406

    Google Scholar 

  • Lombard F, da Rocha RE, Bijma J, Gattuso J-P (2010) Effect of carbonate ion concentration and irradiance on calcification in planktonic foraminifera. Biogeosciences 7(1):247–255

    Google Scholar 

  • Lowenstam HA, Epstein S (1957) On the origin of sedimentary aragonite needles of the Great Bahamas Bank. J Geol 65:364–375

    Google Scholar 

  • Lowenstam HA (1955) Aragonite needles secreted by algae and some sedimentary implications. J Sedim Petrol 25:270–272

    Google Scholar 

  • Lyman J (1956) Buffer mechanism of seawater. PhD thesis, University of California, Los Angeles

    Google Scholar 

  • Mackenzie FT, Pigott JD (1981) Tectonic controls of Phanerozoic sedimentary rock cycling. J Geol Soc Lond 138:183–196

    Google Scholar 

  • Maillard C, Soliman G (1986) Hydrography and the Red Sea and exchanges with the Indian Ocean in summer. Oceanol Acta 9:249–469

    Google Scholar 

  • Makris J, Allam A, Moktar T, Basahel A, Dehghani GA, Bazari M (1983) Crustal structure at the northwestern region of the Arabian shield and its transition to the Red Sea. Bull Fac Earth Sci King Abdulaziz Univ 6:435–447

    Google Scholar 

  • Martinez F, Cochran JR (1988) Structure and tectonics of the northern Red Sea: catching a continental margin between rifting and drifting. Tectonophysics 150:1–32

    Google Scholar 

  • Marubini F, Ferrier-Pages C, Cuif J-P (2003) Suppression of skeletal growth in scleractinian corals by decreasing ambient carbonate-ion concentration: a cross-family comparison. Proc Roy Soc Lond B 270(1511):179–184

    Google Scholar 

  • McKenzie DP, Davies D, Molnar P (1970) Plate tectonics of the Red Sea and East Africa. Nature 226:243–248

    Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Google Scholar 

  • Meshal AH, Behairy AKA, Osman MM (1984) Evaporation from coastal and open waters of the central zone of the red sea. Atmos Ocean 22:369–378

    Google Scholar 

  • Millero FJ (1995) Thermodynamics of the carbon dioxide system in the oceans. Geochim Cosmochim Acta 59:661–677

    Google Scholar 

  • Morcos SM (1970) Physical and chemical oceanography of the Red Sea. In: Barnes H (ed) Oceanography and marine biology: an annual review 8:73–202

    Google Scholar 

  • Morse JM, Berner RA (1972) Dissolution kinetics of calcium carbonate in seawater II. A kinetic origin for lysocline. Am J Sci 272:840–861

    Google Scholar 

  • Mucci A (1983) The solubility of calcite and aragonite in seawater at various salinities, temperatures and 1 atmosphere total pressure. Am J Sci 283:780–799

    Google Scholar 

  • Mucci A, Morse JW (1984) The solubility of calcite in seawater solutions of various magnesium concentrations, It = 0.697 m at 25 °C and one atmosphere total pressure. Geochim Cosmochim Acta 48:815–822

    Google Scholar 

  • Müller MN, Schulz KG, Riebesell U (2010) Effects of long-term high CO2 exposure on two species of coccolithophores. Biogeosciences 7:1109–1116

    Google Scholar 

  • Neumann AC, McGill DA (1953) Circulation of the Red Sea in early summer. Deep Sea Res 8:223–235

    Google Scholar 

  • Opdyke BN, Wilkinson BH (1993) Carbonate mineral saturation state and cratonic limestone accumulation. Am J Sci 293:217–234

    Google Scholar 

  • Osman M (1984) Evaporation from coastal waters off Port Sudan. In: Symposium coral reef environment of the Red Sea, Jeddah, 14–18 Jan 1984, Abstract:7

    Google Scholar 

  • Potts DC (1983) Evolutionary disequilibrium among Indo-Pacific corals. Bull Mar Sci 33:295–314

    Google Scholar 

  • Pytkowicz RM (1965) Rates of inorganic calcium carbonate nucleation. J Geol 196–199

    Google Scholar 

  • Pytkowicz RM (1973) Calcium carbonate retention in supersaturated seawater. Am J Sci 273:515–522

    Google Scholar 

  • Pytkowicz RM (1983) Equilibria, nonequilibria and natural waters. Wiley, New York, 353 pp

    Google Scholar 

  • Pytkowicz RM, Flower GA (1967) Solubility of foraminifera in seawater at high pressures. Geochem J 1:169–182

    Google Scholar 

  • Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–376

    Google Scholar 

  • Royer DL, Berner RA, Beerling DJ (2001) Phanerozoic atmospheric CO2 changes: evaluating geochemical and paleobiological approaches. Earth-Sci Rev 54:349–392

    Google Scholar 

  • Rushdi AI (1989) Kinetics and equilibrium of magnesian calcite in seawater-like solution. PhD thesis, Oregon State University, 245 pp

    Google Scholar 

  • Rushdi AI (1992) Mineralogy and morphology of calcium carbonate as a function of magnesium concentration in artificial seawater. J Fac Mar Sci King Abdulaziz Univ 3:13–24

    Google Scholar 

  • Rushdi AI (1993) Kinetics of calcite overgrowth as a function of magnesium concentrations and supersaturation in artificial seawater. J Fac Mar Sci King Abdulaziz Univ 4:39–54

    Google Scholar 

  • Rushdi AI (1995) Equilibrium behavior of magnesian calcite mineral: a theoretical approach. J Fac Mar Sci King Abdulaziz Univ 6:41–50

    Google Scholar 

  • Rushdi AI (2012) Calcite and aragonite saturation states of Kamaran strait surface seawater, Yemen: summer time. Arab J Geosci 5:1093–1102

    Google Scholar 

  • Rushdi AI (2014) Calcium carbonate saturation levels of the Red Sea coast of Yemen and biogeochemical effects of excess CO2. In: International conference on the marine environment of the Red Sea, King Abdulaziz University, Jeddah, 10–13 Nov 2014 (in press)

    Google Scholar 

  • Rushdi AI, Pytkowicz RM, Suess E, Chen CT (1992) The effects of magnesium-to-calcium ratio, in artificial seawater at different ionic products, upon the induction time, and the mineralogy of calcium carbonate: a laboratory study. Geol Rundsch 81:571–578

    Google Scholar 

  • Santana-Casiano JM, González-Dávila M, Rueda M-J, Llinás O, González-Dávila EF (2007) The interannual variability of oceanic CO2 parameters in the northeast Atlantic subtropical gyre at the ESTOC site. Glob Biogeochem Cycles 21:GB1015

    Google Scholar 

  • Schneider K, Erez J (2006) The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnol Oceanogr 51:1284–1293

    Google Scholar 

  • Sheppard CRC, Sheppard ALS (1991) Corals and coral communities of Arabia. Fauna Saudi Arabia 12:3–191

    Google Scholar 

  • Sheppard CRC, Price ARG, Roberts C (1992) Marine ecology of the Arabian region. Patterns and processes in extreme tropical environments. Academic Press, London, 359 pp

    Google Scholar 

  • Silter WV, Be AWH, Berger WH (1975) Dissolution of deep-sea carbonates. Special Publication Cushman Found for Foraminiferal Research no. 13

    Google Scholar 

  • Silverman J, Lazar B, Erez J (2007) Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef. J Geophys Res-Oceans 112, C05004. doi:10.1029/2006JC003770

  • Simkiss K (1964) The inhibitory effects of some metabolites on the precipitation of CaCO3 from artificial and natural seawater. Journal du Conseil Conseil Permanent International pour l’Exploration de la Mer 29:6–18

    Google Scholar 

  • Smith SV, Pesret F (1974) Processes of carbon dioxide flux in the Fanning Island Lagoon. Pac Sci 28:225–245

    Google Scholar 

  • Smith AD, Roth AA (1979) Effect of carbon dioxide concentration on calcification in the Red Coralline Alga Bossiella orbigniana. Mar Biol 52:217–225

    Google Scholar 

  • Stockman KW, Ginsburg RN, Shinn EA (1967) The production of lime mud by algae in south Florida. J Sedim Petrol 37:348–633

    Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley, New York, 1021 pp

    Google Scholar 

  • Suess E (1973) Interaction of organic compounds with calcium carbonate. Geochim Cosmochim Acta 34:157–168

    Google Scholar 

  • Sullivan W (1974) Continents in motion: the new earth debate. McGraw-Hill Book Company, New York, 399 pp

    Google Scholar 

  • Suzuki A, Nakamori T, Kayanne H (1995) The mechanism of production enhancement in coral reef carbonate systems: model and empirical results. Sed Geol 99:259–280

    Google Scholar 

  • Takagi Y (2002) Otolith formation and endolymph chemistry: a strong correlation between the aragonite saturation state and pH in the endolymph of the trout otolith organ. Mar Ecol Prog Ser 231:237–245

    Google Scholar 

  • Takahashi T (1975) Carbonate chemistry of seawater and the calcite compensation depth in the ocean. Dissolution of deep-sea carbonates. Spec Publ Cushman Found Foraminiferal Res 13:111–126

    Google Scholar 

  • Taviani M (1998a) Axial sedimentation of the Red Sea transitional region (22°–25°N): pelagic, gravity flow and sapropel deposition during the late quaternary. In: Purser BH, Bosence DWJ (eds) Sedimentation and tectonics of rift basins: Red Sea-Gulf of Aden. Chapman and Hall, London, pp 467–478

    Google Scholar 

  • Taviani M (1998b) Post-Miocene reef faunas of the Red Sea: glacio-eustatic controls. In: Purser BH, Bosence DWJ (eds) Sedimentation and tectonics of rift basins: Red Sea-Gulf of Aden. Chapman and Hall, pp 574–582

    Google Scholar 

  • Tramontini C, Davies D (1969) A seismic refraction survey in the Red Sea. Geophys J Roy Astron Soc 17:2225–2241

    Google Scholar 

  • Waldbusser GG, Voigt EP, Bergschneider H, Green MA, Newell RIE (2011) Biocalcification in the eastern oyster (Crassostrea virginica) in relation to long-term trends in Chesapeake Bay pH. Estuaries Coasts 34:221–231

    Google Scholar 

  • Walter LM (1984) Magnesian calcite stabilities: a reevaluation. Geochim cosmochim acta 48:1059–1069

    Google Scholar 

  • Wegener A (1929) The origin of continents and oceans. English translation, 4th rev edn. J Biram, Dover, New York

    Google Scholar 

  • Weiss R (1974) Carbon dioxide in water and seawater. The solubility of a non-ideal gas. Mar Chem 2:203–215

    Google Scholar 

  • Wettenberg H, Timmerman E (1936) Uber die sattigung des seewassers an CaCO3. Annalen der Hydrographie und Maritimen Meteorology 64:23–31

    Google Scholar 

  • Widdicombe S, Spicer JI (2008) Predicting the impact of ocean acidification on benthic biodiversity: what can animal physiology tell us? J Exp Mar Biol Ecol 366(1):187–197

    Google Scholar 

  • Yirgu G, Ebinger CJ, Maguire PKH (eds) (2006) The Afar Volcanic province within the East African Rift System. Geological Society, London, Special Publications 259:1–6

    Google Scholar 

  • Zeebe RE, Wolf-Gladrow DA (2001) CO2 in seawater: equilibrium, kinetics, isotopes, vol 65. Elsevier Oceanography Series, Academic Press, Massachusetts, 341 pp

    Google Scholar 

Download references

Acknowledgment

The author thanks Dr. Najeeb M.A. Rasul for the invitation to participate in this book project. This work is partly supported by the National Program for Sciences and Technologies, King Saud University (NPST project no. ENV-842-09). The author also thanks Professors C.T.A. Chen, M. Al-Sayed and B. Hales for their invaluable comments on the first draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed I. Rushdi .

Editor information

Editors and Affiliations

Appendix

Appendix

Estimation of pH and pCO2

The pH values were estimated using the following equation:

$$ \frac{\text{CA}}{{{\text{TCO}}_{2} }} = \frac{{[{\text{H}}^{ + } ]K_{1} + 2K_{1} K_{2} }}{{[{\text{H}}^{ + } ]^{2} + [{\text{H}}^{ + } ]K_{1} + K_{1} K_{2} }} $$
(6)

The iteration method is used to estimate the concentration of hydrogen ion [H+] in the solution. The pH is:

$$ {\text{pH}} = - \log [{\text{H}}^{ + } ] $$
(7)

The pCO2 in seawater samples can be calculated from equation (6) or the following relationship:

$$ {\text{pCO}}_{2} = K_{0} {\text{TCO}}_{2} \left( {\frac{{[{\text{H}}^{ + } ]^{2} }}{{[{\text{H}}^{ + } ]^{2} + [{\text{H}}^{ + } ]K_{1} + K_{1} K_{2} }}} \right) $$
(8)

The solubility constant of CO2 in seawater can be calculated from Weiss (1974).

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rushdi, A.I. (2015). Calcite and Aragonite Saturation States of the Red Sea and Biogeochemical Impacts of Excess Carbon Dioxide. In: Rasul, N., Stewart, I. (eds) The Red Sea. Springer Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45201-1_16

Download citation

Publish with us

Policies and ethics