Skip to main content

Gene Therapy and Stem Cell Therapy: Overview

  • Chapter
  • First Online:
Gene- and Cell-Based Treatment Strategies for the Eye

Abstract

Here we have aimed to introduce the scientific concepts that led to the development of the fields of gene therapy and cell therapy. From the myriad of scientific discoveries that contributed, we have endeavored to crystallize the steps that were the most important and presented them in the context of scientific history. The birth of genetics led to the discovery of DNA, understanding of inheritance, variations, and mutations. However, not until the development of recombinant technologies that led to the generation of recombinant viruses was it possible to treat genetically inherited diseases. Cell therapies are also a new way of treating disease and here we provide an overview of the development of the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acland GM, Aguirre GD, Ray J, Zhang Q, Aleman TS, Cideciyan AV et al (2001) Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 28:92–95

    CAS  PubMed  Google Scholar 

  • Atchison RW, Casto BC, Hammon WM (1965) Adenovirus-associated defective virus particles. Science 149:754–756

    Article  CAS  PubMed  Google Scholar 

  • Bray LJ, Heazlewood CF, Munster DJ, Hutmacher DW, Atkinson K, Harkin DG (2014) Immunosuppressive properties of mesenchymal stromal cell cultures derived from the limbus of human and rabbit corneas. Cytotherapy 16:64–73

    Article  CAS  PubMed  Google Scholar 

  • Bryant LM, Christopher DM, Giles AR, Hinderer C, Rodriguez JL, Smith JB et al (2013) Lessons learned from the clinical development and market authorization of Glybera. Hum Gene Ther Clin Dev 24:55–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coura Rdos S, Nardi NB (2007) The state of the art of adeno-associated virus-based vectors in gene therapy. Virol J 4:99

    Article  PubMed  Google Scholar 

  • Daya SM, Watson A, Sharpe JR, Giledi O, Rowe A, Martin R et al (2005) Outcomes and DNA analysis of ex vivo expanded stem cell allograft for ocular surface reconstruction. Ophthalmology 112:470–477

    Article  PubMed  Google Scholar 

  • Farrar GJ, Millington-Ward S, Chadderton N, Humphries P, Kenna PF (2012) Gene-based therapies for dominantly inherited retinopathies. Gene Ther 19:137–144

    Article  CAS  PubMed  Google Scholar 

  • Goldshmit Y, Frisca F, Pinto AR, Pebay A, Tang JK, Siegel AL et al (2014) Fgf2 improves functional recovery-decreasing gliosis and increasing radial glia and neural progenitor cells after spinal cord injury. Brain Behav 4:187–200

    Article  PubMed Central  PubMed  Google Scholar 

  • Harkin DG, Apel AJ, Di Girolamo N, Watson S, Brown K, Daniell MD et al (2013) Current status and future prospects for cultured limbal tissue transplants in Australia and New Zealand. Clin Experiment Ophthalmol 41:272–281

    PubMed  Google Scholar 

  • Hoggan MD, Blacklow NR, Rowe WP (1966) Studies of small DNA viruses found in various adenovirus preparations: physical, biological, and immunological characteristics. Proc Natl Acad Sci U S A 55:1467–1474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kenyon KR, Tseng SC (1989) Limbal autograft transplantation for ocular surface disorders. Ophthalmology 96:709–722; discussion 22–23

    Article  CAS  PubMed  Google Scholar 

  • Kotin RM (2011) Large-scale recombinant adeno-associated virus production. Hum Mol Genet 20:R2–R6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kruta M, Seneklova M, Raska J, Salykin A, Zerzankova L, Pesl M et al (2014) Mutation frequency dynamics in HPRT locus in culture adapted human embryonic stem cells and induced pluripotent stem cells correspond to their differentiated counterparts. Stem Cells Dev 23:2443–2454

    Article  CAS  PubMed  Google Scholar 

  • Lai YK, Shen WY, Brankov M, Lai CM, Constable IJ, Rakoczy PE (2002) Potential long-term inhibition of ocular neovascularisation by recombinant adeno-associated virus-mediated secretion gene therapy. Gene Ther 9:804–813

    Article  CAS  PubMed  Google Scholar 

  • McCarthy A (2000) Pharmacogenetics: implications for drug development, patients and society. N Genet Soc 19:135–143

    Article  Google Scholar 

  • McCarty DM, Young SM Jr, Samulski RJ (2004) Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet 38:819–845

    Article  CAS  PubMed  Google Scholar 

  • McLenachan S, Menchon C, Raya A, Consiglio A, Edel MJ (2012) Cyclin A1 is essential for setting the pluripotent state and reducing tumorigenicity of induced pluripotent stem cells. Stem Cells Dev 21:2891–2899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Palomo AB, McLenachan S, Osete JR, Menchon C, Barrot C, Chen F et al (2014) Plant hormones increase efficiency of reprogramming mouse somatic cells to induced pluripotent stem cells and reduce tumorigenicity. Stem Cells Dev 23:586–593

    Article  Google Scholar 

  • Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA et al (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146

    Article  CAS  PubMed  Google Scholar 

  • Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca M (1997) Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349:990–993

    Article  CAS  PubMed  Google Scholar 

  • Rakoczy PE, Shen W-Y, Lai M, Rolling F, Constable IJ (1999) Development of gene therapy-based strategies for the treatment of eye diseases. Drug Dev Res 46:277–285

    Article  CAS  Google Scholar 

  • Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G (2010) Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med 363:147–155

    Article  CAS  PubMed  Google Scholar 

  • Ruiz S, Diep D, Gore A, Panopoulos AD, Montserrat N, Plongthongkum N et al (2012) Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells. Proc Natl Acad Sci 109:16196–16201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM et al (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379:713–720

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Vannucci L, Lai M, Chiuppesi F, Ceccherini-Nelli L, Pistello M (2013) Viral vectors: a look back and ahead on gene transfer technology. New Microbiol 36:1–22

    CAS  PubMed  Google Scholar 

  • Wolff JA, Lederberg J (1994) An early history of gene transfer and therapy. Hum Gene Ther 5:469–480

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Asokan A, Samulski RJ (2006) Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 14:316–327

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethical Requirements

Elizabeth Rakoczy, Samuel McLenachan, and Aaron Magno declare that they have no conflict of interest.

No animal or human studies were carried out by the authors of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth P. Rakoczy PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Magno, A.L., McLenachan, S., Rakoczy, E.P. (2015). Gene Therapy and Stem Cell Therapy: Overview. In: Rakoczy, E. (eds) Gene- and Cell-Based Treatment Strategies for the Eye. Essentials in Ophthalmology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45188-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45188-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45187-8

  • Online ISBN: 978-3-662-45188-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics