Evacuating Robots via Unknown Exit in a Disk

  • Jurek Czyzowicz
  • Leszek Gąsieniec
  • Thomas Gorry
  • Evangelos Kranakis
  • Russell Martin
  • Dominik Pajak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8784)

Abstract

Consider k mobile robots inside a circular disk of unit radius. The robots are required to evacuate the disk through an unknown exit point situated on its boundary. We assume all robots having the same (unit) maximal speed and starting at the centre of the disk. The robots may communicate in order to inform themselves about the presence (and its position) or the absence of an exit. The goal is for all the robots to evacuate through the exit in minimum time.

We consider two models of communication between the robots: in non-wireless (or local) communication model robots exchange information only when simultaneously located at the same point, and wireless communication in which robots can communicate one another at any time.

We study the following question for different values of k: what is the optimal evacuation time for k robots? We provide algorithms and show lower bounds in both communication models for k = 2 and k = 3 thus indicating a difference in evacuation time between the two models. We also obtain almost-tight bounds on the asymptotic relation between evacuation time and team size, for large k. We show that in the local communication model, a team of k robots can always evacuate in time \(3 + \frac{2\pi}{k}\), whereas at least \(3 + \frac{2\pi}{k} - O(k^{-2})\) time is sometimes required. In the wireless communication model, time \(3 + \frac{\pi}{k} + O(k^{-4/3})\) always suffices to complete evacuation, and at least \(3+ \frac{\pi}{k}\) is sometimes required. This shows a clear separation between the local and the wireless communication models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albers, S., Henzinger, M.R.: Exploring Unknown Environments. SIAM J. Comput. 29(4), 1164–1188 (2000)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Albers, S., Kursawe, K., Schuierer, S.: Exploring unknown environments with obstacles. Algorithmica 32, 123–143 (2002)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alpern, S., Gal, S.: The theory of search games and rendezvous. Int. Series in Operations research and Management Science, vol. 55. Kluwer Academic Publishers (2002)Google Scholar
  4. 4.
    Alpern, S., Fokkink, R., Gąsieniec, L., Lindelauf, R., Subrahmanian, V.S(eds.): Search Theory, A Game Theoretic Approach. Springer (2013)Google Scholar
  5. 5.
    Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the Plane. Inf. Comput. 106(2), 234–252 (1993)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Baeza-Yates, R.A., Schott, R.: Parallel Searching in the Plane. Comput. Geom. 5, 143–154 (1995)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Baumann, N., Skutella, M.: Earliest Arrival Flows with Multiple Sources. Math. Oper. Res. 34(2), 499–512 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Beck, A.: On the linear search Problem. Naval Res. Logist. 2, 221–228 (1964)MATHGoogle Scholar
  9. 9.
    Bellman, R.: An optimal search problem. SIAM Rev. 5, 274 (1963)CrossRefGoogle Scholar
  10. 10.
    Burgard, W., Moors, M., Stachniss, C., Schneider, F.E.: Coordinated multi-robot exploration. IEEE Transactions on Robotics 21(3), 376–386 (2005)CrossRefGoogle Scholar
  11. 11.
    Chrobak, M., Gąsieniec, L., Gorry, T., Martin, R.: Evacuation problem on the line (in preparation)Google Scholar
  12. 12.
    Chung, T.H., Hollinger, G.A., Isler, V.: Search and pursuit-evasion in mobile robotics. Autonomous Robots 31(4), 299–316 (2011)CrossRefGoogle Scholar
  13. 13.
    Deng, X., Kameda, T., Papadimitriou, C.H.: How to learn an unknown environment. In: Proc. 32nd Symp. on Foundations of Computer Science, pp. 298–303 (1991)Google Scholar
  14. 14.
    Fekete, S., Gray, C., Kröller, A.: Evacuation of Rectilinear Polygons. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part I. LNCS, vol. 6508, pp. 21–30. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching. Theoretical Computer Science 399(3), 236–245 (2008)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Gluss, B.: An alternative solution to the “lost at sea” problem. Naval Research Logistics Quarterly 8(1), 117–122 (1961)Google Scholar
  17. 17.
    Hoffmann, F., Icking, C., Klein, R., Kriegel, K.: The polygon exploration problem. SIAM J. Comp. 31, 577–600 (2001)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Isbell, J.: Pursuit Around a Hole. Naval Research Logistics Quarterly 14(4), 569–571 (1967)CrossRefMATHGoogle Scholar
  19. 19.
    Kijima, S., Yamashita, M., Yamauchi, Y.: Private communication (2013)Google Scholar
  20. 20.
    Kleinberg, J.M.: On-line Search in a Simple Polygon. In: SODA, pp. 8–15 (1994)Google Scholar
  21. 21.
    Lidbetter, T.: Hide-and-seek and Other Search Games, PhD Thesis. London School of Economics (2013)Google Scholar
  22. 22.
    Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Handbook of Computational Geometry, pp. 633–702 (2000)Google Scholar
  23. 23.
    Nahin, P.: Chases and Escapes: The Mathematics of Pursuit and Evasion. Princeton University Press, Princeton (2007)Google Scholar
  24. 24.
    Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. Theor. Comput. Sci. 84, 127–150 (1991)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Thrun, S.: A Probabilistic On-Line Mapping Algorithm for Teams of Mobile Robots. I. J. Robotic Res. 20(5), 335–363 (2001)CrossRefGoogle Scholar
  26. 26.
    Yamauchi, B.: Frontier-Based Exploration Using Multiple Robots. In: Agents, pp. 47–53 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jurek Czyzowicz
    • 1
  • Leszek Gąsieniec
    • 2
  • Thomas Gorry
    • 2
  • Evangelos Kranakis
    • 3
  • Russell Martin
    • 2
  • Dominik Pajak
    • 4
  1. 1.Département d’informatiqueUniversité du Québec en OutaouaisCanada
  2. 2.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK
  3. 3.School of Computer ScienceCarleton UniversityOttawaCanada
  4. 4.INRIA Bordeaux Sud-OuestTalenceFrance

Personalised recommendations