Task Allocation in Ant Colonies

  • Alejandro Cornejo
  • Anna Dornhaus
  • Nancy Lynch
  • Radhika Nagpal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8784)


In this paper we propose a mathematical model for studying the phenomenon of division of labor in ant colonies. Inside this model we investigate how simple task allocation mechanisms can be used to achieve an optimal division of labor.

We believe the proposed model captures the essential biological features of division of labor in ant colonies and is general enough to study a variety of different task allocation mechanisms. Within this model we propose a distributed randomized algorithm for task allocation that imposes only minimal requirements on the ants; it uses a constant amount of memory and relies solely on a primitive binary feedback function to sense the current labor allocation. We show that with high probability the proposed algorithm converges to a near-optimal division of labor in time which is proportional to the logarithm of the colony size.


Colony Size Social Insect Task Assignment Task Allocation Behavioral Ecology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Camazine, S.: Self-organization in biological systems. Princeton University Press (2003)Google Scholar
  2. 2.
    Seeley, T.D.: The wisdom of the hive: the social physiology of honey bee colonies. Harvard University Press (2009)Google Scholar
  3. 3.
    Dornhaus, A.: Specialization does not predict individual efficiency in an ant. PLoS Biology 6(11), e285 (2008)Google Scholar
  4. 4.
    Dornhaus, A., et al.: Why do not all workers work? Colony size and workload during emigrations in the ant Temnothorax albipennis. Behavioral Ecology and Sociobiology 63(1), 43–51 (2008)CrossRefGoogle Scholar
  5. 5.
    Pinter-Wollman, N., et al.: How is activity distributed among and within tasks in Temnothorax ants? Behavioral Ecology and Sociobiology 66(10), 1407–1420 (2012)CrossRefGoogle Scholar
  6. 6.
    Beekman, M., Sumpter, D.J.T., Ratnieks, F.L.W.: Phase transition between disordered and ordered foraging in Pharaoh’s ants. Proceedings of the National Academy of Sciences 98(17), 9703–9706 (2001)CrossRefGoogle Scholar
  7. 7.
    Sumpter, D., Pratt, S.: A modelling framework for understanding social insect foraging. Behavioral Ecology and Sociobiology 53(3), 131–144 (2003)Google Scholar
  8. 8.
    Myerscough, M.R., Oldroyd, B.P.: Simulation models of the role of genetic variability in social insect task allocation. Insectes Sociaux 51(2), 146–152 (2004)CrossRefGoogle Scholar
  9. 9.
    Lanan, M.C., et al.: The trail less traveled: individual decision-making and its effect on group behavior. PloS One 7(10), e47976 (2012)Google Scholar
  10. 10.
    Robinson, G.E.: Regulation of division of labor in insect societies. Annual Review of Entomology 37(1), 637–665 (1992)CrossRefGoogle Scholar
  11. 11.
    Seid, M.A., Traniello, J.F.: Age-related repertoire expansion and division of labor in Pheidole dentata (Hymenoptera: Formicidae): a new perspective on temporal polyethism and behavioral plasticity in ants. Behavioral Ecology and Sociobiology 60(5), 631–644 (2006)CrossRefGoogle Scholar
  12. 12.
    Wilson, E.O.: Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta). Behavioral Ecology and Sociobiology 7(2), 157–165 (1980)CrossRefGoogle Scholar
  13. 13.
    Jandt, J.M., Dornhaus, A.: Spatial organization and division of labour in the bumblebee Bombus impatiens. Animal Behaviour 77(3), 641–651 (2009)CrossRefGoogle Scholar
  14. 14.
    Robinson, G.E., Grozinger, C.M., Whitfield, C.W.: Sociogenomics: social life in molecular terms. Nature Reviews Genetics 6(4), 257–270 (2005)CrossRefGoogle Scholar
  15. 15.
    Sendova-Franks, A.B., Franks, N.R.: Spatial relationships within nests of the ant Leptothorax unifasciatus and their implications for the division of labour. Animal Behaviour 50(1), 121–136 (1995)CrossRefGoogle Scholar
  16. 16.
    Tofts, C., Franks, N.R.: Doing the right thing: ants, honeybees and naked mole-rats. Trends in Ecology & Evolution 7(10), 346–349 (1992)CrossRefGoogle Scholar
  17. 17.
    Toth, A.L., Robinson, G.E.: Worker nutrition and division of labour in honeybees. Animal Behaviour 69(2), 427–435 (2005)CrossRefGoogle Scholar
  18. 18.
    Gordon, D.M.: The organization of work in social insect colonies. Complexity 8(1), 43–46 (2002)CrossRefGoogle Scholar
  19. 19.
    Weidenmüller, A.: The control of nest climate in bumblebee (Bombus terrestris) colonies: interindividual variability and self reinforcement in fanning response. Behavioral Ecology 15(1), 120–128 (2004)CrossRefGoogle Scholar
  20. 20.
    Bonabeau, E., Theraulaz, G., Deneubourg, J.-L.: Quantitative study of the fixed threshold model for the regulation of division of labour in insect societies. Proceedings of the Royal Society of London. Series B: Biological Sciences 263(1376), 1565–1569 (1996)CrossRefGoogle Scholar
  21. 21.
    Ravary, F., et al.: Individual experience alone can generate lasting division of labor in ants. Current Biology 17(15) (2007)Google Scholar
  22. 22.
    Feinerman, O., et al.: Collaborative search on the plane without communication. In: Proceedings of the 2012 ACM Symposium on Principles of Distributed Computing, pp. 77–86. ACM (2012)Google Scholar
  23. 23.
    Feinerman, O., Korman, A.: Memory lower bounds for randomized collaborative search and implications for biology. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 61–75. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Korman, A.: Theoretical distributed computing meets biology. In: Proceedings of the 4th International Workshop on Theoretical Aspects of Dynamic Distributed Systems, p. 7. ACM (2012)Google Scholar
  25. 25.
    Lenzen, C., Lynch, N., Newport, C., Radeva, T.: Trade-offs between Selection Complexity and Performance when Searching the Plane without Communication. In: Proceedings of the 2012 ACM Symposium on Principles of Distributed Computing. Springer (2014)Google Scholar
  26. 26.
    Afek, Y., et al.: A biological solution to a fundamental distributed computing problem. Science 331(6014), 183–185 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time environment. Journal of the ACM (JACM) 20(1), 46–61 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Dertouzos, M.L., Mok, A.K.: Multiprocessor online scheduling of hard-real-time tasks. IEEE Transactions on Software Engineering 15(12), 1497–1506 (1989)CrossRefGoogle Scholar
  29. 29.
    Davis, R.I., Burns, A.: A survey of hard real-time scheduling for multiprocessor systems. ACM Computing Surveys (CSUR) 43(4), 35 (2011)CrossRefGoogle Scholar
  30. 30.
    Fiat, A., Rabani, Y., Ravid, Y.: Competitive k-server algorithms. In: Proceedings of the 31st Annual Symposium on Foundations of Computer Science, pp. 454–463. IEEE (1990)Google Scholar
  31. 31.
    Bartal, Y., Rosen, A.: The distributed k-server problem-a competitive distributed translator for k-server algorithms. In: Proceedings of the 33rd Annual Symposium on Foundations of Computer Science, pp. 344–353. IEEE (1992)Google Scholar
  32. 32.
    Georgiou, C., Shvartsman, A.A.: Cooperative Task-Oriented Computing: Algorithms and Complexity. Synthesis Lectures on Distributed Computing Theory 2(2), 1–167 (2011)CrossRefGoogle Scholar
  33. 33.
    Garey Michael, R., Johnson, D.S.: Computers and Intractability: A guide to the theory of NP-completeness. WH Freeman & Co., San Francisco (1979)zbMATHGoogle Scholar
  34. 34.
    Shmoys, D.B., Tardos, É.: An approximation algorithm for the generalized assignment problem. Mathematical Programming 62(1-3), 461–474 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Deneubourg, J.-L., et al.: Self-organization mechanisms in ant societies (II): learning in foraging and division of labor. In: From Individual to Collective Behavior in Social Insects, p. 177 (1987)Google Scholar
  36. 36.
    Merkle, D., Middendorf, M.: Dynamic polyethism and competition for tasks in threshold reinforcement models of social insects. Adaptive Behavior 12(3-4), 251–262 (2004)CrossRefGoogle Scholar
  37. 37.
    Plowright, R.C., Plowright, C.M.S.: Elitism in social insects: a positive feedback model. In: Interindividal Behavioral Variability in Social Insects, pp. 419–431 (1988)Google Scholar
  38. 38.
    Theraulaz, G., Bonabeau, E., Denuebourg, J.N.: Response threshold reinforcements and division of labour in insect societies. Proceedings of the Royal Society of London. Series B: Biological Sciences 265(1393), 327–332 (1998)CrossRefGoogle Scholar
  39. 39.
    Tripet, F., Nonacs, P.: Foraging for Work and Age-Based Polyethism: The Roles of Age and Previous Experience on Task Choice in Ants. Ethology 110(11), 863–877 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alejandro Cornejo
    • 1
  • Anna Dornhaus
    • 2
  • Nancy Lynch
    • 3
  • Radhika Nagpal
    • 1
  1. 1.School of Engineering and Applied SciencesHarvard UniversityUSA
  2. 2.Ecology and Evolutionary BiologyUniversity of ArizonaUSA
  3. 3.Massachusetts Institute of TechnologyCSAILUSA

Personalised recommendations