Advertisement

Who Are You? Secure Identities in Ad Hoc Networks

  • Seth Gilbert
  • Calvin Newport
  • Chaodong Zheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8784)

Abstract

Sybil attacks occur when malicious users create multiple fake identities to gain an advantage over honest users. Wireless ad hoc networks are particularly vulnerable to these attacks because the participants are not known in advance, and they use an open and shared communication medium. In this paper, we develop algorithms that thwart sybil attacks in multi-channel wireless ad hoc networks using radio resource testing strategies. In particular, we describe and analyze new anti-sybil algorithms that guarantee, with high probability, that each honest device accepts a set of trusted and unforgeable identities that include all other honest devices and a bounded number of fake (sybil) identities. The proposed algorithms provide trade-offs between time complexity and sybil bounds. We also note that these algorithms solve, as subroutines, two problems of independent interest in this anonymous wireless setting: Byzantine consensus and network size estimation.

Keywords

Network Size Radio Resource Malicious Node Faulty Node Sybil Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alchieri, E.A.P., Bessani, A.N., da Silva Fraga, J., Greve, F.: Byzantine consensus with unknown participants. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 22–40. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Aspnes, J., Jackson, C., Krishnamurthy, A.: Exposing computationally-challenged Byzantine impostors. Tech. rep., Yale University Department of Computer ScienceGoogle Scholar
  3. 3.
    Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and Advanced Topics. Wiley (2004)Google Scholar
  4. 4.
    Chockler, G., Demirbas, M., Gilbert, S., Lynch, N., Newport, C., Nolte, T.: Consensus and collision detectors in radio networks. Distributed Computing 21(1), 55–84 (2008)CrossRefzbMATHGoogle Scholar
  5. 5.
    Delporte-Gallet, C., Fauconnier, H., Tielmann, A.: Fault-tolerant consensus in unknown and anonymous networks. In: 29th IEEE International Conference on Distributed Computing Systems, pp. 368–375 (2009)Google Scholar
  6. 6.
    Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kermarrec, A.-M., Ruppert, E., Tran-The, H.: Byzantine agreement with homonyms. In: Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pp. 21–30. ACM, New York (2011)CrossRefGoogle Scholar
  7. 7.
    Demirbas, M., Song, Y.: An rssi-based scheme for sybil attack detection in wireless sensor networks. In: Proceedings of the 2006 International Symposium on World of Wireless, Mobile and Multimedia Networks, pp. 564–570. IEEE Computer Society, Washington D.C. (2006)Google Scholar
  8. 8.
    Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  10. 10.
    Fusco, E.G., Pelc, A.: Communication complexity of consensus in anonymous message passing systems. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 191–206. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Gilbert, S., Newport, C., Zheng, C.: Who are you? secure identities in ad hoc networks. Tech. rep. National University of Singapore (2014)Google Scholar
  12. 12.
    Gilbert, S.L., Zheng, C.: Sybilcast: Broadcast on the open airwaves. In: Proceedings of the 25th Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp. 130–139. ACM, New York (2013)Google Scholar
  13. 13.
    Gołębiewski, Z., Klonowski, M., Koza, M., Kutyłowski, M.: Towards fair leader election in wireless networks. In: Ruiz, P.M., Garcia-Luna-Aceves, J.J. (eds.) ADHOC-NOW 2009. LNCS, vol. 5793, pp. 166–179. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Hoffman, K., Zage, D., Nita-Rotaru, C.: A survey of attack and defense techniques for reputation systems. ACM Computing Survey 42(1), 1:1–1:31 (2009)Google Scholar
  15. 15.
    Klonowski, M., Koza, M.: Countermeasures against sybil attacks in wsn based on proofs-of-work. In: Proceedings of the 6th ACM Conference on Security and Privacy in Wireless and Mobile Networks, pp. 179–184. ACM, New York (2013)CrossRefGoogle Scholar
  16. 16.
    Klonowski, M., Koza, M., Kutyłowski, M.: Repelling sybil-type attacks in wireless ad hoc systems. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 391–402. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Mónica, D., Leitão, J., Rodrigues, L., Ribeiro, C.: On the use of radio resource tests in wireless ad-hoc networks. In: Proceedings of the 3rd Workshop on Recent Advances on Intrusion-Tolerant Systems, pp. F21–F26 (2009)Google Scholar
  18. 18.
    Mónica, D., Leitão, J., Rodrigues, L., Ribeiro, C.: Observable non-sybil quorums construction in one-hop wireless ad hoc networks. In: 2010 IEEE/IFIP International Conference on Dependable Systems and Networks, pp. 31–40 (2010)Google Scholar
  19. 19.
    Newsome, J., Shi, E., Song, D., Perrig, A.: The sybil attack in sensor networks: Analysis & defenses. In: Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks, pp. 259–268. ACM, New York (2004)Google Scholar
  20. 20.
    Piro, C., Shields, C., Levine, B.N.: Detecting the sybil attack in mobile ad hoc networks. In: Securecomm and Workshops, pp. 1–11 (2006)Google Scholar
  21. 21.
    Srikanth, T., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-tolerant algorithms. Distributed Computing 2(2), 80–94 (1987)CrossRefGoogle Scholar
  22. 22.
    Yu, H., Gibbons, P., Kaminsky, M., Xiao, F.: Sybillimit: A near-optimal social network defense against sybil attacks. In: 2008 IEEE Symposium on Security and Privacy, pp. 3–17 (2008)Google Scholar
  23. 23.
    Yu, H., Kaminsky, M., Gibbons, P., Flaxman, A.: Sybilguard: Defending against sybil attacks via social networks. IEEE/ACM Transactions on Networking 16(3), 576–589 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Seth Gilbert
    • 1
  • Calvin Newport
    • 2
  • Chaodong Zheng
    • 1
  1. 1.Department of Computer ScienceNational University of SingaporeSingapore
  2. 2.Department of Computer ScienceGeorgetown UniversityUnited States

Personalised recommendations