Current Advances in Genome Detection of Peste des Petits Ruminants Virus

  • Emmanuel Couacy-HymannEmail author


Molecular techniques have given various opportunities to detect the genome of peste des petits ruminants virus (PPRV) at high resolutions, and these powerful methods are very sensitive and specific. In the past, radioisotope-based techniques have been used for diagnostic purposes. However, because of associated hazards these may cause to human and environment, the radioelement hybridization techniques are no more in use. Alternative techniques such as hybridization with the digoxigenin/anti-digoxigenin system have been developed and are being practised. Moreover, genome amplification with different polymerase chain reaction (PCR) chemistries (conventional PCR, real-time PCR, multiplex real-time PCR, LAMP-PCR) has been developed to easily detect genome of PPRV, independent of lineage variations. Prior to these, adequate samples should be taken from sick animals and should be well conserved and transported rapidly to the laboratory for analysis. Despite convincing performance of these new diagnostic methods, currently, it is not possible to directly differentiate lineages of PPRV strains, which are now prevalent without distinct geographical demarcation. Currently, the amplified PCR products are sequenced to determine genetic classification of PPRV lineages and to establish epidemiological links.


Polymerase Chain Reaction Polymerase Chain Reaction Assay Polymerase Chain Reaction Technique Conventional Polymerase Chain Reaction Internal Control System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Banyard AC, Parida S, Batten C, Oura C, Kwiatek O, Libeau G (2010) Global distribution of peste des ruminants virus and prospects for improved diagnosis and control. J Gen Virol 91:2885–2897PubMedCrossRefGoogle Scholar
  2. Bao J, Li L, Barrett T, Suo L, Zhao W, Liu C, Li J (2008) Development of one-step real-time RT-PCR assay for detection and quantification of peste des petits ruminants virus. J Virol Methods 148(1–2):232–236PubMedCrossRefGoogle Scholar
  3. Batten et al (2011) A real-time RT-PCR assay for the specific detection of Peste des petits ruminants virus. J Virol Methods 171:401–404PubMedCrossRefGoogle Scholar
  4. Buston SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR. A perspective. J Mol Endocrinol 34(3):597–601CrossRefGoogle Scholar
  5. Couacy-Hymann E, Libeau G, Diallo A, Lefèvre PC (1993) Diagnostic du RPV et PPRV par la technique PCR. Communication au research coordination meeting of the FAO/IAEA/SIDA/OAU/IBAR/PARC coordinated research programme. Cairo, Egypt, 15–21 Sep 103–111Google Scholar
  6. Couacy-Hymann E, Bidjeh K, Angba A, Domenech J, Diallo A (1995) Goats vaccinated with the attenuated peste des petits ruminants virus are protected against rinderpest disease. Res Vet Sci 59:106–109PubMedCrossRefGoogle Scholar
  7. Couacy-Hymann E, Roger F, Hurard C, Guillou JP, Libeau G, Diallo A (2002) Rapid and sensitive detection of peste des petits ruminants virus by a polymerase chain reaction assay. J Virol Methods 100(1–2):17–25PubMedCrossRefGoogle Scholar
  8. Couacy-Hymann E, Bodjo C, Danho T, Libeau G, Diallo A (2005) Surveillance of wildlife as a tool for monitoring rinderpest and peste des petits ruminants in West Africa. Rev Sci Tech Off Int Epiz 24(3):869–877Google Scholar
  9. Diallo A, Barrett T, Barbron M, Subbarao SM, Taylor WP (1989) Differentiation of rinderpest and peste des petits ruminants viruses using specific cDNA clones. J Virol Methods 23:127–136PubMedCrossRefGoogle Scholar
  10. Forsyth MA, Barrett T (1995) Evaluation of polymerase chain reaction for the detection and characterization of rinderpest and peste des petits ruminants viruses for epidemiological studies. Virus Res 39(2–3):151–163PubMedCrossRefGoogle Scholar
  11. George A, Dhar P, Sreenivasa BP, Singh RP, Bandyopadhyay SK (2006) The M and N genes-based simplex and multiplex PCRs are better that the F or H gene-based simplex PCR for peste-des-petits-rumimants virus. Acta Virol 50:217–222PubMedGoogle Scholar
  12. Gibbs EJP, Taylor WP, Lawman MJP, Bryant J (1979) Classification of peste des petits ruminants as the fourth member of genus Morbillivirus. Intervirology 11:268–274PubMedCrossRefGoogle Scholar
  13. Hoffmann B, Beer M, Reid SM, Mertens P, Oura CAL, van Rijn PA, Slomka MJ, Banks J, Brown IH, Alexander DJ, King DP (2009) A review of RT-PCR technologies used in veterinary virology and disease control: sensitive and specific diagnosis of five livestock diseases notifiable to the World organization for animal health. Vet Microbiol 139:1–23PubMedCrossRefGoogle Scholar
  14. Kerur N, Jhala MK, Joshi CG (2008) Genetic characterization of Indian peste des petits ruminants virus (PPRV) by sequencing and phylogenetic analysis of fusion protein and nucleoprotein gene segments. Res Vet Sci 85:176–183PubMedCrossRefGoogle Scholar
  15. Kwiatek O, Minet C, Grillet C, Hurardy C, Carlssonz E, Karimovz B, Albina E, Diallo A, Libeau G (2007) Peste des Petits Ruminants (PPR) Outbreak in Tajikistan. J Comp Path 136:111–119PubMedCrossRefGoogle Scholar
  16. Kwiatek O, Keïta D, Gil P, Fernandez-Pinero J, Clavero MAJ, Albina E, Libeau G (2010) Quantitative one-step ral-time RT-PCR for the fast detection of the four genotypes of PPRV. J Virol Methods 165:177–268CrossRefGoogle Scholar
  17. Li W, Li G, Xiao Juan F, Zhang K, Jia F, Shi L, Unger H (2009) Journal Zhongguo Yufang Shouyi Xuebao/Chinese Journal of Preventive Veterinary Medicine 31(5):374–378Google Scholar
  18. Li L, Bao J, Wu W, Wang Z, Wang J, Gong M, Liu C, Li J (2010) Rapid detection of peste des petits ruminants virus by a reverse transcription loop-mediated isothermal amplification assay. J Virol Methods. doi: 10.1016/j.jviromet.2010.08.016 Google Scholar
  19. Manak MM (1993) Radioactive labeling procedures. In DNA probes, 2 edn, Section 4. M Stockton Press, pp 137–172Google Scholar
  20. Michaud V, Gil P, Kwiatek O, Prome S, Dixon L, Romero L, Le Potier MF, Arias M, Couacy-Hymann E, Roger F, Libeau G, Albina E (2007) Long-term storage at tropical temperature of dried-blood filter papers for detection and genotyping of RNA and DNA viruses by direct PCR. J Virol Methods 146(1–2):257–265PubMedCrossRefGoogle Scholar
  21. Notomi T, Okayama H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:63CrossRefGoogle Scholar
  22. Pestana EA, Belak S, Diallo A, Crowther JR, Viljoen GJ (2010) Multiplex PCR in routine diagnosis. In: Early, rapid and sensitive veterinary molecular diagnostics—real time PCR applications. 1st edn, pp 54. Edited by FAO/International Atomic Agency Energy Agency. Springer, London. doi: 10.1007/978-90-481-3132-7
  23. Polci A, Cosseddu GM, Ancora M, Pinoni C, El Harrak M, Sebhatu TT, Ghebremeskel E, Sghaier S, Lelli R, Monaco F (2013) Development and preliminary evaluation of a new real-time RT-PCR assay for detection of peste des petits ruminants virus genome. Transbound Emerg Dis. doi: 10.1111/tbed.12117
  24. Steinhaurer DA, De La Torre JC, Holland JJ (1989) High nucleotide substitution error frequencies in clonal pools of vesicular stomatitis virus. J Virol 63:2063–2071Google Scholar
  25. Wang Z, Bao J, Wu X et al (2009) Peste des petits ruminants virus in Tibet. China Emerg Infect Dis 15(2):299–301CrossRefGoogle Scholar
  26. Yeh J-Y, Lee J-H, Seo H-J, Park J-Y, Moon J-S, Cho I-S, Choi I-S, Park S-Y, Song C-S, Lee J-B (2011) Simultanous detection of Rift Valley Fever, Bluetongu, rinderpest and peste des petits ruminants viruses by a single-tube multiplex reverse transcriptase-PCR assay using a dual priming oligonucleotide system. J Clin Microbiol. doi: 10.1128/JCM.00710-10

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.LANADA/Laboratoire Central de Pathologie AnimaleBingervilleCôte D’ivoire

Personalised recommendations