Skip to main content

Chitosan Fibers

Chitin, Chitosan, and Alginate Fibers

  • Chapter
  • First Online:
Innovative Biofibers from Renewable Resources

Abstract

Chitosan has been extensively studied for the production of fibers, and the fibers developed have been thoroughly characterized for their structure, properties, and potential applications. One of the major advantages of using chitosan for fiber production is the solubility of chitosan in common solvents that are relatively inexpensive and environmentally friendly. Table 25.1 lists the most common solvents that have been studied for dissolving chitosan. In addition to the solvents, several other parameters have also been reported to influence the properties of chitosan fibers produced. El-Tahlawy and Hudson studied the effect of various spinning parameters on the production and properties of chitosan fibers [06El]. They reported that viscosity of the solution was critical for fiber production and that adding salt such as sodium acetate assisted in controlling the viscosity, draw ratio, and therefore fiber properties. Similarly, it was reported that the process used to dry the fibers after coagulation also influenced fiber properties. Drying in a methanol coagulation bath provided fibers that could easily separate from each other and have a smooth surface and higher mechanical properties than direct, radiant, or forced air heating [98Kna]. The effect of demineralization time and temperature on the properties and biodegradation of chitosan fibers was investigated by Judawisastra et al. [12Jud]. It was reported that demineralization caused degradation of the polymers and led to an increase in the diameter of the fibers, reduced tenacity by 52 %, and increased elongation (136 %). Biodegradation of the fibers in a phosphate-buffered solution containing 2 % lysozyme increased by 17 %. Similarly, ripening of chitosan dissolved in acetic acid was found to substantially affect fiber properties [03Lee]. Increasing ripening time continually decreased tenacity and modulus but increased elongation. Thermal analysis showed that the peak temperature and thermal degradation temperature decreased with an increase in ripening time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hayes, E.R., Davies, D.H., Munroe, V.G.: Proceedings of the first international conference on chitin and chitosan, Boston, Massachusetts, p. 103. MIT Sea Grant Program, Cambridge (1978)

    Google Scholar 

  2. East, G.C., Qin, Y.: J. Appl. Polym. Sci. 50, 1773 (1993)

    Article  Google Scholar 

  3. Hirano, S., Midorikawa, T.: Biomaterials 19, 293 (1998)

    Article  Google Scholar 

  4. Knaul, J., Hooper, M., Chanyi, C., Creber, K.A.M.: J. Appl. Polym. Sci. 69, 1435 (1998)

    Article  Google Scholar 

  5. Hirano, S., Nakahira, T., Nakagawa, M., Kim, S.K.: J. Biotechnol. 70, 373 (1999)

    Article  Google Scholar 

  6. Hirano, S., Nagamura, K., Zhang, M., Kim, S.K., Chung, B.G., Yoshikawa, M., Midorikawa, T.: Carbohydr. Polym. 38, 293 (1999)

    Article  Google Scholar 

  7. Knaul, J.Z., Hudson, S.M., Creber, K.A.M.: J. Appl. Polym. Sci. 72, 1721 (1999)

    Article  Google Scholar 

  8. Knaul, J.Z., Hudson, S.M., Creber, K.A.M.: J. Polym. Sci. B Polym. Phys. 87, 1079 (1999)

    Article  Google Scholar 

  9. Denkbas, E.B., Seyyal, M., Piskin, E.: J. Membr. Sci. 172, 33 (2000)

    Article  Google Scholar 

  10. Nousiainen, P., Vehvilainen, M., Struszczyk, H., Makinen, E.: J. Appl. Polym. Sci. 76, 1725 (2000)

    Article  Google Scholar 

  11. Zheng, H., Du, Y., Yu, J., Huang, R., Zhang, L.: J. Appl. Polym. Sci. 80, 2558 (2001)

    Article  Google Scholar 

  12. Li, Z., Liu, X., Zhuang, X., Guan, Y., Yao, K.: J. Appl. Polym. Sci. 84, 2049 (2002)

    Article  Google Scholar 

  13. Hirano, S., Nakahira, T., Zhang, M., Nakagawa, M., Yoshikawa, M., Midorikawa, T.: Carb. Polym. 47, 121 (2002)

    Article  Google Scholar 

  14. Lee, S.: J. Appl. Polym. Sci. 90, 2870 (2003)

    Article  Google Scholar 

  15. Lee, S., Park, S., Choi, J.: J. Appl. Polym. Sci. 92, 2054 (2004)

    Article  Google Scholar 

  16. Yang, Q., Dou, F., Liang, B., Shen, Q.: Carbohydr. Polym. 61, 393 (2005)

    Article  Google Scholar 

  17. Yang, Q., Dou, F., Liang, B., Shen, Q.: Carbohydr. Polym. 59, 205 (2005)

    Article  Google Scholar 

  18. El-Tahlawy, K., Hudson, S.M.: J. Appl. Polym. Sci. 100, 1162 (2006)

    Article  Google Scholar 

  19. Notin, L., Viton, C., David, L., Alcouffe, P., Rochas, C., Domard, A.: Acta Biomater. 2, 387 (2006)

    Article  Google Scholar 

  20. Notin, L., Viton, C., Luca, J., Domard, A.: Acta Biomater. 2, 297 (2006)

    Article  Google Scholar 

  21. Qin, Y., Hu, H., Luo, A., Wang, Y., Huang, X., Song, P.: J. Appl. Polym. Sci. 99, 3110 (2006)

    Article  Google Scholar 

  22. Choi, C.Y., Kim, S.B., Pak, P.K., Yoo, D., Chung, Y.S.: Carbohydr. Polym. 68, 122 (2007)

    Article  Google Scholar 

  23. El-Tahlawy, K., Hudson, S.M., Hebeish, A.A.: J. Appl. Polym. Sci. 105, 2801 (2007)

    Article  Google Scholar 

  24. Lee, S., Park, S., Kim, Y.: Carbohydr. Polym. 70, 53 (2007)

    Article  Google Scholar 

  25. Malheiro, V.N., Caridade, S.G., Alves, N.M., Mano, J.F.: Acta Biomater. 6, 418 (2010)

    Article  Google Scholar 

  26. Xu, X., Zhuang, X., Cheng, B., Xu, J., Long, G., Zhang, H.: Carbohydr. Polym. 81, 541 (2010)

    Article  Google Scholar 

  27. Patia, F., Adhikarib, B., Dhara, S.: Carbohydr. Polym. 346(16), 2582 (2011)

    Article  Google Scholar 

  28. Judawisastra, H., Hadyiswanto, I.O.C., Winiati, W.: Procedia. Chem. 4, 138 (2012)

    Article  Google Scholar 

  29. Li, L., Yuang, B., Liu, S., Yu, S., Xie, S., Xie, C., Liu, F., Gui, X., Pei, L., Zhang, B.: J. Mater. Chem. 22, 8585 (2012)

    Article  Google Scholar 

  30. Li, Y., Zhuang, P., Zhang, Y., Wang, Z., Hu, Q.: Mater. Lett. 84, 73 (2012)

    Article  Google Scholar 

  31. Ma, B., Qin, A., Li, X., He, C.: Carbohydr. Polym. 97, 300 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reddy, N., Yang, Y. (2015). Chitosan Fibers. In: Innovative Biofibers from Renewable Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45136-6_25

Download citation

Publish with us

Policies and ethics