Skip to main content

Task-Based Presurgical Functional MRI in Patients with Brain Tumors

  • Chapter
  • First Online:

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Neurosurgery in functionally important brain areas carries a high risk for postoperative neurological deficits. In patients with brain tumors, functional magnetic resonance imaging (fMRI) facilitates presurgical planning and evaluation of surgical outcome for the estimation of an as good as possible balance between maximal tumor resection and minimal loss of function. To this end fMRI is also applied intraoperatively for functional neuronavigation preferably in combination with DTI-tractography. However, fMRI has not reached the status of a standard diagnostic neuroimaging procedure, yet. Preoperative task-based fMRI represents the best established and validated clinical application of fMRI, is increasingly performed in larger medical neurocenters, and in this context can only be performed exclusively in individual patients. Therefore, it differs fundamentally from research application in neuroscience.

This chapter provides a review of the current literature and presents optimized task-based presurgical fMRI protocols for motor, somatosensory, and language function, along with a standardized data evaluation protocol using a dynamic statistical threshold. Examples of physiological brain activation are given, criteria for the selection of candidates for presurgical fMRI are provided, and illustrative cases with typical and atypical presurgical fMRI findings are presented. Complementary applications with diffusion tensor imaging (DTI) and DTI-tractography (DTT) are highlighted. Finally, important diagnostic capabilities and limitations of presurgical fMRI are discussed.

In conclusion, fMRI is feasible for advanced multimodal MR-neuroimaging in the clinical setting and provides important diagnostic information noninvasively, which is otherwise unavailable. Task-based preoperative fMRI is valid, reasonably sensitive, and accurate to localize the different representations of the human body in the primary motor and somatosensory cortex prior to brain tumor surgery, which in general also applies to language localization and lateralization. Although there is a substantial body of studies on presurgical language fMRI available, the results are still heterogeneous. Here, fMRI has at least the potential to help to reduce the number of invasive diagnostic measures needed and to guide their targeted application. If, and to what extent, intraoperative electrocorticography (ECoG) or the Wada test can be replaced is still not clear, yet. The integration of fMRI with DTI and DTT is complementary and increasingly used, providing important pretherapeutic and intraoperative information on essential cortical and subcortical functional structures in relation to the surgical target.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdullah KG, Lubelski D et al (2013) Use of diffusion tensor imaging in glioma resection. Neurosurg Focus 34(4):E1

    PubMed  Google Scholar 

  • Achten E, Jackson GD et al (1999) Presurgical evaluation of the motor hand area with functional MR imaging in patients with tumors and dysplastic lesions. Radiology 210(2):529–538

    CAS  PubMed  Google Scholar 

  • Akbar M, Stippich C, Aschoff A (2005) Magnetic resonance imaging and cerebrospinal fluid shunt valves. N Engl J Med 353(13):1413–1414

    CAS  PubMed  Google Scholar 

  • Alkadhi H, Kollias SS et al (2000) Plasticity of the human motor cortex in patients with arteriovenous malformations: a functional MR imaging study. AJNR Am J Neuroradiol 21(8):1423–1433

    CAS  PubMed  Google Scholar 

  • Archip N, Clatz O et al (2007) Non-rigid alignment of pre-operative MRI, fMRI, and DT-MRI with intra-operative MRI for enhanced visualization and navigation in image-guided neurosurgery. Neuroimage 35(2):609–624

    PubMed Central  PubMed  Google Scholar 

  • Atlas SW, Howard RS 2nd et al (1996) Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas: findings and implications for clinical management. Neurosurgery 38(2):329–338

    CAS  PubMed  Google Scholar 

  • Avila C, Barros-Loscertales A et al (2006) Memory lateralization with 2 functional MR imaging tasks in patients with lesions in the temporal lobe. AJNR Am J Neuroradiol 27(3):498–503

    CAS  PubMed  Google Scholar 

  • Baciu M, Le Bas JF et al (2003) Presurgical fMRI evaluation of cerebral reorganization and motor deficit in patients with tumors and vascular malformations. Eur J Radiol 46(2):139–146

    CAS  PubMed  Google Scholar 

  • Bahn MM, Lin W et al (1997) Localization of language cortices by functional MR imaging compared with intracarotid amobarbital hemispheric sedation. AJR Am J Roentgenol 169(2):575–579

    CAS  PubMed  Google Scholar 

  • Bandettini PA, Wong EC et al (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25(2):390–397

    CAS  PubMed  Google Scholar 

  • Barnett A, Marty-Dugas J, McAndrews MP (2014) Advantages of sentence-level fMRI language tasks in presurgical language mapping for temporal lobe epilepsy. Epilepsy Behav 32:114–120

    PubMed  Google Scholar 

  • Baudendistel K, Schad LR et al (1996) Monitoring of task performance during functional magnetic resonance imaging of sensorimotor cortex at 1.5 T. Magn Reson Imaging 14(1):51–58

    CAS  PubMed  Google Scholar 

  • Bauer PR, Reitsma JB et al (2013) Can fMRI safely replace the Wada test for preoperative assessment of language lateralisation? A meta-analysis and systematic review. J Neurol Neurosurg Psychiatry 85(5):581–8

    PubMed  Google Scholar 

  • Baumann SB, Noll DC et al (1995) Comparison of functional magnetic resonance imaging with positron emission tomography and magnetoencephalography to identify the motor cortex in a patient with an arteriovenous malformation. J Image Guid Surg 1(4):191–197

    CAS  PubMed  Google Scholar 

  • Baxendale S (2002) The role of functional MRI in the presurgical investigation of temporal lobe epilepsy patients: a clinical perspective and review. J Clin Exp Neuropsychol 24(5):664–676

    PubMed  Google Scholar 

  • Bazin B, Cohen L et al (2000) Study of hemispheric lateralization of language regions by functional MRI. Validation with the Wada test. Rev Neurol (Paris) 156(2):145–148

    CAS  Google Scholar 

  • Belliveau JW, Kennedy DN Jr et al (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254(5032):716–719

    CAS  PubMed  Google Scholar 

  • Bello L, Acerbi F et al (2006) Intraoperative language localization in multilingual patients with gliomas. Neurosurgery 59(1):115–125; discussion 115–125

    PubMed  Google Scholar 

  • Benbadis SR, Binder JR et al (1998) Is speech arrest during wada testing a valid method for determining hemispheric representation of language? Brain Lang 65(3):441–446

    CAS  PubMed  Google Scholar 

  • Benson RR, Logan WJ et al (1996) Functional MRI localization of language in a 9-year-old child. Can J Neurol Sci 23(3):213–219

    CAS  PubMed  Google Scholar 

  • Benson RR, FitzGerald DB et al (1999) Language dominance determined by whole brain functional MRI in patients with brain lesions. Neurology 52(4):798–809

    CAS  PubMed  Google Scholar 

  • Berger H (1929) Über das Elektroenzephalogramm des Menschen. Arch Psychiatr Nervenk 87:527–570

    Google Scholar 

  • Berkels B, Cabrilo I et al (2014) Co-registration of intra-operative brain surface photographs and pre- operative MR images. Int J Comput Assist Radiol Surg 9(3):387–400

    PubMed  Google Scholar 

  • Berntsen EM, Gulati S et al (2010) Functional magnetic resonance imaging and diffusion tensor tractography incorporate into an intraoperative 3-dimensional ultrasound-based neuronavigation system: impact on therapeutic strategies, extent of resection, and clinical outcome. Neurosurgery 67(2):251–264

    PubMed  Google Scholar 

  • Bertani G, Carrabba G et al (2012) Predictive value of inferior fronto-occipital fasciculus (IFO) DTI-fiber tracking for determining the extent of resection for surgery of frontal and temporal gliomas preoperatively. J Neurosurg Sci 56(2):137–143

    CAS  PubMed  Google Scholar 

  • Binder JR, Rao SM et al (1995) Lateralized human brain language systems demonstrated by task subtraction functional magnetic resonance imaging. Arch Neurol 52(6):593–601

    CAS  PubMed  Google Scholar 

  • Binder JR, Swanson SJ et al (1996) Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology 46(4):978–984

    CAS  PubMed  Google Scholar 

  • Binder JR, Frost JA et al (1997) Human brain language areas identified by functional magnetic resonance imaging. J Neurosci 17(1):353–362

    CAS  PubMed  Google Scholar 

  • Binder JR, Frost JA et al (1999) Conceptual processing during the conscious resting state. A functional MRI study. J Cogn Neurosci 11(1):80–95

    CAS  PubMed  Google Scholar 

  • Binder JR, Frost JA et al (2000) Human temporal lobe activation by speech and nonspeech sounds. Cereb Cortex 10(5):512–528

    CAS  PubMed  Google Scholar 

  • Binder JR, Achten E et al (2002) Functional MRI in epilepsy. Epilepsia 43(Suppl 1):51–63

    Google Scholar 

  • Bittar RG, Olivier A et al (1999a) Localization of somatosensory function by using positron emission tomography scanning: a comparison with intraoperative cortical stimulation. J Neurosurg 90(3):478–483

    CAS  PubMed  Google Scholar 

  • Bittar RG, Olivier A et al (1999b) Presurgical motor and somatosensory cortex mapping with functional magnetic resonance imaging and positron emission tomography. J Neurosurg 91(6):915–921

    CAS  PubMed  Google Scholar 

  • Bittar RG, Olivier A et al (2000) Cortical motor and somatosensory representation: effect of cerebral lesions. J Neurosurg 92(2):242–248

    CAS  PubMed  Google Scholar 

  • Blatow M, Nennig E et al (2007) FMRI reflects functional connectivity of human somatosensory cortex. Neuroimage 37(3):927–936

    PubMed  Google Scholar 

  • Bogen JE (1976) Wernicke’s region – where is it? Ann N Y Acad Sci 290:834–843

    Google Scholar 

  • Bogomolny DL, Petrovich NM et al (2004) Functional MRI in the brain tumor patient. Top Magn Reson Imaging 15(5):325–335

    PubMed  Google Scholar 

  • Bookheimer SY (2000) Methodological issues in pediatric neuroimaging. Ment Retard Dev Disabil Res Rev 6(3):161–165

    CAS  PubMed  Google Scholar 

  • Bookheimer S (2002) Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annu Rev Neurosci 25:151–188

    CAS  PubMed  Google Scholar 

  • Briganti C, Sestieri C et al (2012) Reorganization of functional connectivity of the language network in patients with brain gliomas. AJNR Am J Neuroradiol 33(10):1983–1990

    CAS  PubMed  Google Scholar 

  • Buckner RL, Bandettini PA et al (1996) Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proc Natl Acad Sci U S A 93(25):14878–14883

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carpentier A, Pugh KR et al (2001a) Functional MRI of language processing: dependence on input modality and temporal lobe epilepsy. Epilepsia 42(10):1241–1254

    CAS  PubMed  Google Scholar 

  • Carpentier AC, Constable RT et al (2001b) Patterns of functional magnetic resonance imaging activation in association with structural lesions in the rolandic region: a classification system. J Neurosurg 94(6):946–954

    CAS  PubMed  Google Scholar 

  • Cedzich C, Taniguchi M et al (1996) Somatosensory evoked potential phase reversal and direct motor cortex stimulation during surgery in and around the central region. Neurosurgery 38(5):962–970

    CAS  PubMed  Google Scholar 

  • Choudhri AF, Narayana S et al (2013) Same day tri-modality functional brain mapping prior to resection of a lesion involving eloquent cortex: technical feasibility. Neuroradiol J 26(5):548–554

    PubMed  Google Scholar 

  • Cordella R, Acerbi F (2013) Intraoperative neurophysiological monitoring of the cortico-spinal tract in image-guided mini-invasive neurosurgery. Clin Neurophysiol 124(6):1244–1254

    PubMed  Google Scholar 

  • Cosgrove GR, Buchbinder BR, Jiang H (1996) Functional magnetic resonance imaging for intracranial navigation. Neurosurg Clin N Am 7(2):313–322

    CAS  PubMed  Google Scholar 

  • Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173

    CAS  PubMed  Google Scholar 

  • Csaba J (2003) Positron emission tomography in presurgical localization of epileptic foci. Ideggyogy Sz 56(7–8):249–254

    PubMed  Google Scholar 

  • Cuenod CA, Bookheimer SY et al (1995) Functional MRI during word generation, using conventional equipment: a potential tool for language localization in the clinical environment. Neurology 45(10): 1821–1827

    CAS  PubMed  Google Scholar 

  • Cunningham JM, Morris GL III et al (2008) Unexpected right hemisphere language representation identified by the intracarotid procedure in right-handed epilepsy surgery candidates. Epilepsy Behav 13(1):139–143

    PubMed  Google Scholar 

  • Deblaere K, Backes WH et al (2002) Developing a comprehensive presurgical functional MRI protocol for patients with intractable temporal lobe epilepsy: a pilot study. Neuroradiology 44(8):667–673

    CAS  PubMed  Google Scholar 

  • DeMonte, F., Gilbert, et al (2007) Tumors of the brain and spine, MD Anderson Cancer Care Series. Springer, New York XII, 364 p

    Google Scholar 

  • Desmond JE, Sum JM et al (1995) Functional MRI measurement of language lateralization in Wada-tested patients. Brain 118(Pt 6): 1411–1419

    PubMed  Google Scholar 

  • Dimous S, Battisti RA et al (2013) A systematic review of functional magnetic resonance imaging and diffusion tensor imaging modalities used in presurgical planning of brain tumour resection. Neurosurg Rev 36(2):205–214

    Google Scholar 

  • Duffau H (2001) Acute functional reorganisation of the human motor cortex during resection of central lesions: a study using intraoperative brain mapping. J Neurol Neurosurg Psychiatry 70(4):506–513

    PubMed Central  CAS  PubMed  Google Scholar 

  • Duffau H (2005) Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol 4(8):476–486

    PubMed  Google Scholar 

  • Duffau H (2006) New concepts in surgery of WHO grade II gliomas: functional brain mapping, connectionism and plasticity – a review. J Neurooncol 79(1):77–115

    PubMed  Google Scholar 

  • Duffau H, Capelle L et al (1999) Intra-operative direct electrical stimulations of the central nervous system: the Salpetriere experience with 60 patients. Acta Neurochir (Wien) 141(11):1157–1167

    CAS  Google Scholar 

  • Duffau H, Sichez JP, Lehericy S (2000) Intraoperative unmasking of brain redundant motor sites during resection of a precentral angioma: evidence using direct cortical stimulation. Ann Neurol 47(1):132–135

    CAS  PubMed  Google Scholar 

  • Duffau H, Bauchet L et al (2001) Functional compensation of the left dominant insula for language. Neuroreport 12(10):2159–2163

    CAS  PubMed  Google Scholar 

  • Duffau H, Capelle L et al (2002a) Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain 125(Pt 1):199–214

    PubMed  Google Scholar 

  • Duffau H, Denvil D, Capelle L (2002b) Long term reshaping of language, sensory, and motor maps after glioma resection: a new parameter to integrate in the surgical strategy. J Neurol Neurosurg Psychiatry 72(4):511–556

    PubMed Central  CAS  PubMed  Google Scholar 

  • Duffau H, Capelle L et al (2003) Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a consecutive series of 103 patients. J Neurosurg 98(4):764–778

    PubMed  Google Scholar 

  • Dym RJ, Burns J et al (2011) Is functional MR imaging assessment of hemispheric language dominance as good as the WADA test?: a meta-analysis. Radiology 261(2):446–455

    PubMed  Google Scholar 

  • Dymarkowski S, Sunaert S et al (1998) Functional MRI of the brain: localisation of eloquent cortex in focal brain lesion therapy. Eur Radiol 8(9):1573–1580

    CAS  PubMed  Google Scholar 

  • Fakhri M, All Oghablan M et al (2013) Atypical language lateralization: an fMRI study in patients with cerebral lesions. Funct Neurol 28(1):55–61

    PubMed Central  PubMed  Google Scholar 

  • Fandino J, Kollias SS et al (1999) Intraoperative validation of functional magnetic resonance imaging and cortical reorganization patterns in patients with brain tumors involving the primary motor cortex. J Neurosurg 91(2):238–250

    CAS  PubMed  Google Scholar 

  • Feigl GC, Safavi-Abbasi S et al (2008) Real-time 3 T fMRI data of brain tumour patients for intra-operative localization of primary motor areas. Eur J Surg Oncol 34(6):708–715

    CAS  PubMed  Google Scholar 

  • Fernandez G, de Greiff A et al (2001) Language mapping in less than 15 minutes: real-time functional MRI during routine clinical investigation. Neuroimage 14(3):585–594

    CAS  PubMed  Google Scholar 

  • Fesl G, Moriggl B et al (2003) Inferior central sulcus: variations of anatomy and function on the example of the motor tongue area. Neuroimage 20(1):601–610

    CAS  PubMed  Google Scholar 

  • Findley AM, Ambrose JB et al (2012) Dynamics of hemispheric dominance for language assessed by magnetoencephalographic imaging. Ann Neurol 71(5):668–686

    Google Scholar 

  • FitzGerald DB, Cosgrove GR et al (1997) Location of language in the cortex: a comparison between functional MR imaging and electrocortical stimulation. AJNR Am J Neuroradiol 18(8):1529–1539

    CAS  PubMed  Google Scholar 

  • Fox PT, Mintun MA et al (1986) Mapping human visual cortex with positron emission tomography. Nature 323(6091):806–809

    CAS  PubMed  Google Scholar 

  • Frahm J, Merboldt KD et al (1994) Brain or vein – oxygenation or flow? On signal physiology in functional MRI of human brain activation. NMR Biomed 7(1–2):45–53

    CAS  PubMed  Google Scholar 

  • Friston K (1996) Statistical parametric mapping and other analyses of functional imaging data. In: Mazziotta J, Toga AW (eds) Brain mapping: the methods. Academic, New York, pp 363–386

    Google Scholar 

  • Frost JA, Binder JR et al (1999) Language processing is strongly left lateralized in both sexes. Evidence from functional MRI. Brain 122(Pt 2):199–208

    PubMed  Google Scholar 

  • Gabrieli JD, Poldrack RA, Desmond JE (1998) The role of left prefrontal cortex in language and memory. Proc Natl Acad Sci U S A 95(3):906–913

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gaillard WD, Bookheimer SY, Cohen M (2000a) The use of fMRI in neocortical epilepsy. Adv Neurol 84:391–404

    CAS  PubMed  Google Scholar 

  • Gaillard WD, Hertz-Pannier L et al (2000b) Functional anatomy of cognitive development: fMRI of verbal fluency in children and adults. Neurology 54(1):180–185

    CAS  PubMed  Google Scholar 

  • Gaillard WD, Grandin GB, Xu B (2001a) Developmental aspects of pediatric fMRI: considerations for image acquisition, analysis, and interpretation. Neuroimage 13(2):239–249

    CAS  PubMed  Google Scholar 

  • Gaillard WD, Pugliese M et al (2001b) Cortical localization of reading in normal children: an fMRI language study. Neurology 57(1):47–54

    CAS  PubMed  Google Scholar 

  • Gaillard WD, Balsamo L et al (2002) Language dominance in partial epilepsy patients identified with an fMRI reading task. Neurology 59(2):256–265

    CAS  PubMed  Google Scholar 

  • García-Eulate R, García-García D et al (2011) Functional bold MRI: advantages of the 3 T vs. the 1.5 T. Clin Imaging 35(3):236–241

    PubMed  Google Scholar 

  • Gasser T, Ganslandt O et al (2005) Intraoperative functional MRI: implementation and preliminary experience. Neuroimage 26(3): 685–693

    PubMed  Google Scholar 

  • Georgi JC, Stippich C et al (2004) Active deep brain stimulation during MRI: a feasibility study. Magn Reson Med 51(2):380–388

    PubMed  Google Scholar 

  • Geschwind N (1971) Current concepts: aphasia. N Engl J Med 284(12):654–656

    CAS  PubMed  Google Scholar 

  • Gevins A (1995) High-resolution electroencephalographic studies of cognition. Adv Neurol 66:181–195; discussion 195–198

    CAS  PubMed  Google Scholar 

  • Gevins A, Leong H et al (1995) Mapping cognitive brain function with modern high-resolution electroencephalography. Trends Neurosci 18(10):429–436

    CAS  PubMed  Google Scholar 

  • Gil-Robles S, Duffau H (2010) Surgical management of World Health Organization Grade II gliomas in eloquent areas: the necessity of preserving a margin around functional structures. Neurosurg Focus 28(2):E8

    PubMed  Google Scholar 

  • Golaszewski SM, Zschiegner F et al (2002) A new pneumatic vibrator for functional magnetic resonance imaging of the human sensorimotor cortex. Neurosci Lett 324(2):125–128

    CAS  PubMed  Google Scholar 

  • Golaszewski SM, Siedentopf CM et al (2004) Modulatory effects on human sensorimotor cortex by whole-hand afferent electrical stimulation. Neurology 62(12):2262–2269

    CAS  PubMed  Google Scholar 

  • Golaszewski SM, Siedentopf CM et al (2006) Human brain structures related to plantar vibrotactile stimulation: a functional magnetic resonance imaging study. Neuroimage 29(3):923–929

    PubMed  Google Scholar 

  • Gold S, Christian B et al (1998) Functional MRI statistical software packages: a comparative analysis. Hum Brain Mapp 6(2):73–84

    CAS  PubMed  Google Scholar 

  • González-Darder JM, González-López P (2010) Multimodal navigation in the functional microsurgical resection of intrinsic brain tumors located in eloquent motor areas: role of tractography. Neurosurg Focus 28(2):E5

    PubMed  Google Scholar 

  • Grabowski TJ (2000) Investigating language with functional neuroimaging. In: Mazziotta J, Toga AW (eds) Brain mapping: the systems. Academic, San Diego, pp 425–461

    Google Scholar 

  • Grummich P, Nimsky C et al (2006) Combining fMRI and MEG increases the reliability of presurgical language localization: a clinical study on the difference between and congruence of both modalities. Neuroimage 32(4):1793–1803

    PubMed  Google Scholar 

  • Håberg A, Kvistad KA et al (2004) Preoperative blood oxygen level-dependent functional magnetic resonance imaging in patients with primary brain tumors: clinical application and outcome. Neurosurgery 54(4):902–914; discussion 914–915

    PubMed  Google Scholar 

  • Hajnal JV, Myers R et al (1994) Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn Reson Med 31(3):283–291

    CAS  PubMed  Google Scholar 

  • Hall WA, Liu H, Truwit CL (2005) Functional magnetic resonance imaging-guided resection of low-grade gliomas. Surg Neurol 64(1):20–27; discussion 27

    PubMed  Google Scholar 

  • Hämäläinen M, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography -theory, instrumentation and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–487

    Google Scholar 

  • Hammeke TA, Yetkin FZ et al (1994) Functional magnetic resonance imaging of somatosensory stimulation. Neurosurgery 35(4): 677–681

    CAS  PubMed  Google Scholar 

  • Hammeke TA, Bellgowan PS, Binder JR (2000) fMRI: methodology – cognitive function mapping. Adv Neurol 83:221–233

    CAS  PubMed  Google Scholar 

  • Hari R, Ilmoniemi RJ (1986) Cerebral magnetic fields. Crit Rev Biomed Eng 14(2):93–126

    CAS  PubMed  Google Scholar 

  • Hasegawa M, Carpenter PA, Just MA (2002) An fMRI study of bilingual sentence comprehension and workload. Neuroimage 15(3):647–660

    PubMed  Google Scholar 

  • Hayashi Y, Kinoshita M et al (2012) Correlation between language function and the left arcuate fasciculus detected by diffusion tensor imaging tractography. J Neurosurg 117(5):839–843

    PubMed  Google Scholar 

  • Herholz K, Reulen HJ et al (1997) Preoperative activation and intraoperative stimulation of language-related areas in patients with glioma. Neurosurgery 41(6):1253–1260; discussion 1260–1262

    CAS  PubMed  Google Scholar 

  • Hermann BP, Perrine K et al (1999) Visual confrontation naming following left anterior temporal lobectomy: a comparison of surgical approaches. Neuropsychology 13(1):3–9

    CAS  PubMed  Google Scholar 

  • Hernandez AE, Dapretto M et al (2001) Language switching and language representation in Spanish-English bilinguals: an fMRI study. Neuroimage 14(2):510–520

    CAS  PubMed  Google Scholar 

  • Hertz-Pannier L, Gaillard WD et al (1997) Noninvasive assessment of language dominance in children and adolescents with functional MRI: a preliminary study. Neurology 48(4):1003–1012

    CAS  PubMed  Google Scholar 

  • Hertz-Pannier L, Chiron C et al (2002) Late plasticity for language in a child’s non-dominant hemisphere: a pre- and post-surgery fMRI study. Brain 125(Pt 2):361–372

    PubMed  Google Scholar 

  • Hinke RM, Hu X et al (1993) Functional magnetic resonance imaging of Broca’s area during internal speech. Neuroreport 4(6):675–678

    CAS  PubMed  Google Scholar 

  • Hirsch J, Ruge MI et al (2000) An integrated functional magnetic resonance imaging procedure for preoperative mapping of cortical areas associated with tactile, motor, language, and visual functions. Neurosurgery 47(3):711–721; discussion 721–722

    CAS  PubMed  Google Scholar 

  • Hoeller M, Krings T et al (2002) Movement artefacts and MR BOLD signal increase during different paradigms for mapping the sensorimotor cortex. Acta Neurochir (Wien) 144(3):279–284; discussion 284

    CAS  Google Scholar 

  • Holman BL, Devous MD Sr (1992) Functional brain SPECT: the emergence of a powerful clinical method. J Nucl Med 33(10):1888–1904

    CAS  PubMed  Google Scholar 

  • Holodny AI, Shevzov-Zebrun N (2011) Motor and sensory mapping. Neurosurg Clin North Am 22(2):207–218

    Google Scholar 

  • Holodny AI, Schulder M et al (1999) Decreased BOLD functional MR activation of the motor and sensory cortices adjacent to a glioblastoma multiforme: implications for image-guided neurosurgery. AJNR Am J Neuroradiol 20(4):609–612

    CAS  PubMed  Google Scholar 

  • Holodny AI, Schulder M et al (2000) The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neurosurgery. AJNR Am J Neuroradiol 21(8):1415–1422

    CAS  PubMed  Google Scholar 

  • Holodny AI, Schwartz TH et al (2001) Tumor involvement of the corticospinal tract: diffusion magnetic resonance tractography with intraoperative correlation. J Neurosurg 95(6):1082

    CAS  PubMed  Google Scholar 

  • Holodny AI, Schulder M et al (2002) Translocation of Broca’s area to the contralateral hemisphere as the result of the growth of a left inferior frontal glioma. J Comput Assist Tomogr 26(6):941–943

    PubMed  Google Scholar 

  • Hou BL, Bradbury M et al (2006) Effect of brain tumor neovasculature defined by rCBV on BOLD fMRI activation volume in the primary motor cortex. Neuroimage 32(2):489–497

    PubMed  Google Scholar 

  • Hsu CC, Wu MT, Lee C (2001) Robust image registration for functional magnetic resonance imaging of the brain. Med Biol Eng Comput 39(5):517–524

    CAS  PubMed  Google Scholar 

  • Hulvershorn J, Bloy L et al (2005a) Spatial sensitivity and temporal response of spin echo and gradient echo bold contrast at 3 T using peak hemodynamic activation time. Neuroimage 24(1):216–223

    PubMed  Google Scholar 

  • Hulvershorn J, Bloy L et al (2005b) Temporal resolving power of spin echo and gradient echo fMRI at 3 T with apparent diffusion coefficient compartmentalization. Hum Brain Mapp 25(2):247–258

    PubMed  Google Scholar 

  • Illes J, Francis WS et al (1999) Convergent cortical representation of semantic processing in bilinguals. Brain Lang 70(3):347–363

    CAS  PubMed  Google Scholar 

  • Jack CR Jr, Thompson PM et al (1994) Sensory motor cortex: correlation of presurgical mapping with functional MR imaging and invasive cortical mapping. Radiology 190(1):85–92

    PubMed  Google Scholar 

  • Jacobs AH, Kracht LW et al (2005) Imaging in neurooncology. NeuroRx 2(2):333–347

    PubMed Central  PubMed  Google Scholar 

  • Janecek JK, Swanson SJ et al (2013) Language lateralization by fMRI and WADA testing in 229 patients with epilepsy: rates and predictors of discordance. Epilepsia 54(2):314–322

    PubMed Central  PubMed  Google Scholar 

  • Jia XX, Yu Y et al (2013) FMRI-driven DTT-assessment of corticospinal tracts prior to cortex resection. Can J Neurol Sci 40(4):558–563

    PubMed  Google Scholar 

  • Jiang Z, Krainik A (2010) Impaired fMRI activation in patients with primary brain tumors. Neuroimage 52(2):538–548

    PubMed  Google Scholar 

  • Jovčevska I, Kočevar N, Komel R (2013) Glioma and glioblastoma – how much do we (not) know? Mol Clin Oncol 1(6):935–941

    PubMed Central  PubMed  Google Scholar 

  • Just MA, Carpenter PA et al (1996) Brain activation modulated by sentence comprehension. Science 274(5284):114–116

    CAS  PubMed  Google Scholar 

  • Kampe KK, Jones RA, Auer DP (2000) Frequency dependence of the functional MRI response after electrical median nerve stimulation. Hum Brain Mapp 9(2):106–114

    CAS  PubMed  Google Scholar 

  • Kasprian G, Seidel S (2010) Modern neuroimaging of brain plasticity. Radiologe 50(2):136–143

    CAS  PubMed  Google Scholar 

  • Kaye AH, Laws ER (2011) Brain tumors: an encyclopedic approach, expert consult – online and print, 3rd edn. Saunders, St. Louis

    Google Scholar 

  • Killgore WD, Glosser G et al (1999) Functional MRI and the Wada test provide complementary information for predicting post-operative seizure control. Seizure 8(8):450–455

    CAS  PubMed  Google Scholar 

  • Kim KH, Relkin NR et al (1997) Distinct cortical areas associated with native and second languages. Nature 388(6638):171–174

    CAS  PubMed  Google Scholar 

  • Kim MJ, Holodny AI et al (2005) The effect of prior surgery on blood oxygen level-dependent functional MR imaging in the preoperative assessment of brain tumors. AJNR Am J Neuroradiol 26(8):1980–1985

    PubMed  Google Scholar 

  • Klein D, Milner B et al (1995) The neural substrates underlying word generation: a bilingual functional-imaging study. Proc Natl Acad Sci U S A 92(7):2899–2903

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kober H, Nimsky C et al (2001) Correlation of sensorimotor activation with functional magnetic resonance imaging and magnetoencephalography in presurgical functional imaging: a spatial analysis. Neuroimage 14(5):1214–1228

    CAS  PubMed  Google Scholar 

  • Kokkonen SM, Kiviniemi V et al (2005) Effect of brain surgery on auditory and motor cortex activation: a preliminary functional magnetic resonance imaging study. Neurosurgery 57(2):249–256; discussion 249–256

    PubMed  Google Scholar 

  • Konrad F, Nennig E et al (2005) Does the individual adaptation of standardized speech paradigmas for clinical functional magnetic resonance imaging (fMRI) effect the localization of the language-dominant hemisphere and of Broca’s and Wernicke’s areas. Rofo 177(3):381–385

    CAS  PubMed  Google Scholar 

  • Krainik A, Lehericy S et al (2001) Role of the supplementary motor area in motor deficit following medial frontal lobe surgery. Neurology 57(5):871–878

    CAS  PubMed  Google Scholar 

  • Krainik A, Lehericy S et al (2003) Postoperative speech disorder after medial frontal surgery: role of the supplementary motor area. Neurology 60(4):587–594

    CAS  PubMed  Google Scholar 

  • Krainik A, Duffau H et al (2004) Role of the healthy hemisphere in recovery after resection of the supplementary motor area. Neurology 62(8):1323–1332

    CAS  PubMed  Google Scholar 

  • Krasnow B, Tamm L et al (2003) Comparison of fMRI activation at 3 T and 1.5 T during perceptual, cognitive, and effective processing. Neuroimage 18(4):813–826

    CAS  PubMed  Google Scholar 

  • Krings T, Buchbinder BR et al (1997) Functional magnetic resonance imaging and transcranial magnetic stimulation: complementary approaches in the evaluation of cortical motor function. Neurology 48(5):1406–1416

    CAS  PubMed  Google Scholar 

  • Krings T, Reul J et al (1998) Functional magnetic resonance mapping of sensory motor cortex for image-guided neurosurgical intervention. Acta Neurochir (Wien) 140(3):215–222

    CAS  Google Scholar 

  • Krings T, Erberich SG et al (1999) MR blood oxygenation level-dependent signal differences in parenchymal and large draining vessels: implications for functional MR imaging. AJNR Am J Neuroradiol 20(10):1907–1914

    CAS  PubMed  Google Scholar 

  • Krings T, Reinges MH et al (2001) Functional MRI for presurgical planning: problems, artefacts, and solution strategies. J Neurol Neurosurg Psychiatry 70(6):749–760

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krings T, Reinges MH et al (2002a) Factors related to the magnitude of T2* MR signal changes during functional imaging. Neuroradiology 44(6):459–466

    CAS  PubMed  Google Scholar 

  • Krings T, Topper R et al (2002b) Activation in primary and secondary motor areas in patients with CNS neoplasms and weakness. Neurology 58(3):381–390

    CAS  PubMed  Google Scholar 

  • Krishnan R, Raabe A et al (2004) Functional magnetic resonance imaging-integrated neuronavigation: correlation between lesion-to-motor cortex distance and outcome. Neurosurgery 55(4):904–914; discusssion 914–915

    PubMed  Google Scholar 

  • Kuhnt D, Bauer MH, Nimsky C (2012) Brain shift compensation and neurosurgical image fusion using intraoperative MRI: current status and future challenges. Crit Rev Biomed Eng 40(3):175–185

    PubMed  Google Scholar 

  • Kumar A, Chandra PS et al (2014) The role of neuronavigation-guided functional MRI and diffusion tensor tractography along with cortical stimulation in patients with eloquent cortex lesions. Br J Neurosurg 28(2):226–233

    PubMed  Google Scholar 

  • Kundu B, Penwarden A et al (2013) Association of functional magnetic resonance imaging indices with postoperative language outcomes in patients with primary brain tumors. Neurosurg Focus 34(4):E6

    PubMed Central  PubMed  Google Scholar 

  • Kurth R, Villringer K et al (1998) fMRI assessment of somatotopy in human Brodmann area 3b by electrical finger stimulation. Neuroreport 9(2):207–212

    CAS  PubMed  Google Scholar 

  • Kwong KK, Belliveau JW et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89(12):5675–5679

    PubMed Central  CAS  PubMed  Google Scholar 

  • la Fougère C, Rominger A et al (2009) PET and SPECT in epilepsy: a critical review. Epilepsy Behav 15(1):50–55

    PubMed  Google Scholar 

  • Landis SH, Murray T et al (1999) Cancer statistics, 1999. CA Cancer J Clin 49(1):8–31, 1

    CAS  PubMed  Google Scholar 

  • Latchaw RE, Ugurbil K, Hu X (1995) Functional MR imaging of perceptual and cognitive functions. Neuroimaging Clin N Am 5(2):193–205

    CAS  PubMed  Google Scholar 

  • Lazar RM, Marshall RS et al (1997) Anterior translocation of language in patients with left cerebral arteriovenous malformation. Neurology 49(3):802–808

    CAS  PubMed  Google Scholar 

  • Lee CC, Jack CR Jr et al (1996) Real-time adaptive motion correction in functional MRI. Magn Reson Med 36(3):436–444

    CAS  PubMed  Google Scholar 

  • Lee CC, Grimm RC et al (1998a) A prospective approach to correct for inter-image head rotation in fMRI. Magn Reson Med 39(2):234–243

    CAS  PubMed  Google Scholar 

  • Lee CC, Jack CR Jr, Riederer SJ (1998b) Mapping of the central sulcus with functional MR: active versus passive activation tasks. AJNR Am J Neuroradiol 19(5):847–852

    CAS  PubMed  Google Scholar 

  • Lee CC, Jack CR Jr et al (1998c) Real-time reconstruction and high-speed processing in functional MR imaging. AJNR Am J Neuroradiol 19(7):1297–1300

    CAS  PubMed  Google Scholar 

  • Lee CC, Ward HA et al (1999) Assessment of functional MR imaging in neurosurgical planning. AJNR Am J Neuroradiol 20(8): 1511–1519

    CAS  PubMed  Google Scholar 

  • Lee MH, Smyser CD, Shimony JS (2012) Resting-state fMRI: a review of methods and clinical applications. AJNR Am J Neuroradiol 34(10):1866–72

    PubMed Central  PubMed  Google Scholar 

  • Lehericy S, Cohen L et al (2000a) Functional MR evaluation of temporal and frontal language dominance compared with the Wada test. Neurology 54(8):1625–1633

    CAS  PubMed  Google Scholar 

  • Lehericy S, Duffau H et al (2000b) Correspondence between functional magnetic resonance imaging somatotopy and individual brain anatomy of the central region: comparison with intraoperative stimulation in patients with brain tumors. J Neurosurg 92(4):589–598

    CAS  PubMed  Google Scholar 

  • Lehericy S, Biondi A et al (2002) Arteriovenous brain malformations: is functional MR imaging reliable for studying language reorganization in patients? Initial observations. Radiology 223(3):672–682

    PubMed  Google Scholar 

  • Lichtheim L (1885) On aphasia. Brain 7:433–484

    Google Scholar 

  • Liu G, Ogawa S (2006) EPI image reconstruction with correction of distortion and signal losses. J Magn Reson Imaging 24(3):683–689

    PubMed  Google Scholar 

  • Liu H, Hall WA, Truwit CL (2003) The roles of functional MRI in MR-guided neurosurgery in a combined 1.5 Tesla MR-operating room. Acta Neurochir Suppl 85:127–135

    CAS  PubMed  Google Scholar 

  • Liu WC, Feldman SC et al (2005) The effect of tumour type and distance on activation in the motor cortex. Neuroradiology 47(11):813–819

    PubMed  Google Scholar 

  • Liu H, Buckner RL et al (2009) Task-free presurgical mapping using functional magnetic resonance imaging intrinsic activity. J Neurosurg 111(4):746–754

    PubMed Central  PubMed  Google Scholar 

  • Logan WJ (1999) Functional magnetic resonance imaging in children. Semin Pediatr Neurol 6(2):78–86

    CAS  PubMed  Google Scholar 

  • Logothetis NK (2002) The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci 357(1424):1003–1037

    PubMed Central  PubMed  Google Scholar 

  • Logothetis NK (2003) The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 23(10):3963–3971

    CAS  PubMed  Google Scholar 

  • Logothetis NK, Pfeuffer J (2004) On the nature of the BOLD fMRI contrast mechanism. Magn Reson Imaging 22(10):1517–1531

    PubMed  Google Scholar 

  • Logothetis NK, Wandell BA (2004) Interpreting the BOLD signal. Annu Rev Physiol 66:735–769

    CAS  PubMed  Google Scholar 

  • Logothetis NK, Pauls J et al (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157

    CAS  PubMed  Google Scholar 

  • Louis DN, Ohgaki H et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109

    PubMed Central  PubMed  Google Scholar 

  • Ludemann L, Forschler A et al (2006) BOLD signal in the motor cortex shows a correlation with the blood volume of brain tumors. J Magn Reson Imaging 23(4):435–443

    PubMed  Google Scholar 

  • Lurito JT, Lowe MJ et al (2000) Comparison of fMRI and intraoperative direct cortical stimulation in localization of receptive language areas. J Comput Assist Tomogr 24(1):99–105

    CAS  PubMed  Google Scholar 

  • Majos A, Tybor K et al (2005) Cortical mapping by functional magnetic resonance imaging in patients with brain tumors. Eur Radiol 15(6):1148–1158

    PubMed  Google Scholar 

  • Manglore S, Dawn Bharath RD et al (2013) Utility of resting fMRI and connectivity in patients with brain tumor. Neurol India 61(2):144–151

    PubMed  Google Scholar 

  • Mazziotta JC, Phelps ME et al (1982) Tomographic mapping of human cerebral metabolism: auditory stimulation. Neurology 32(9):921–937

    CAS  PubMed  Google Scholar 

  • McKinney PA (2004) Brain tumours: incidence, survival, and aetiology. J Neurol Neurosurg Psychiatry 75(Suppl II):ii12–ii17

    PubMed Central  PubMed  Google Scholar 

  • Menon RS, Ogawa S et al (1995) BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: echoplanar imaging correlates with previous optical imaging using intrinsic signals. Magn Reson Med 33(3):453–459

    CAS  PubMed  Google Scholar 

  • Mitchell TJ, Hacker CD et al (2013) A novel data-driven approach to preoperative mapping of functional cortex using resting-state functional magnetic resonance imaging. Neurosurgery 73(6):969–982

    PubMed Central  PubMed  Google Scholar 

  • Moller M, Freund M et al (2005) Real time fMRI: a tool for the routine presurgical localisation of the motor cortex. Eur Radiol 15(2):292–295

    CAS  PubMed  Google Scholar 

  • Morita N, Wang S et al (2011) Diffusion tensor imaging of the corticospinal tract in patients with brain neoplasms. Magn Reson Med Sci 10(4):239–243

    PubMed  Google Scholar 

  • Morris GL 3rd, Mueller WM et al (1994) Functional magnetic resonance imaging in partial epilepsy. Epilepsia 35(6):1194–1198

    PubMed  Google Scholar 

  • Mueller WM, Yetkin FZ et al (1996) Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors. Neurosurgery 39(3):515–520; discussion 520–521

    CAS  PubMed  Google Scholar 

  • Müller RA, Rothermel RD et al (1998) Determination of language dominance by [15O]-water PET in children and adolescents: a comparison with the Wada test. J Epilepsy 11(3):152–161

    Google Scholar 

  • Naidich TP, Hof PR et al (2001) Anatomic substrates of language: emphasizing speech. Neuroimaging Clin N Am 11(2):305–341, ix

    CAS  PubMed  Google Scholar 

  • Nimsky C, Ganslandt O et al (2006) Intraoperative visualization for resection of gliomas: the role of functional neuronavigation and intraoperative 1.5 T MRI. Neurol Res 28(5):482–487

    PubMed  Google Scholar 

  • Nitschke MF, Melchert UH et al (1998) Preoperative functional magnetic resonance imaging (fMRI) of the motor system in patients with tumours in the parietal lobe. Acta Neurochir (Wien) 140(12):1223–1229

    CAS  Google Scholar 

  • Ogawa S, Lee TM et al (1990a) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87(24):9868–9872

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ogawa S, Lee TM et al (1990b) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14(1):68–78

    CAS  PubMed  Google Scholar 

  • Ogawa S, Tank DW et al (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89(13):5951–5955

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ogawa S, Menon RS et al (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64(3):803–812

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ohgaki H (2009) Epidemiology of brain tumors. In: Methods of molecular biology, cancer biology, vol 472. Humana Press, Totowa, pp 323–341

    Google Scholar 

  • Ojemann GA (1991) Cortical organization of language. J Neurosci 11(8):2281–2287

    CAS  PubMed  Google Scholar 

  • Ojemann G, Ojemann J et al (1989) Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg 71(3):316–326

    CAS  PubMed  Google Scholar 

  • Ojemann GA, Ojemann J, Ramsey NF (2013) Relation between functional magnetic resonance imaging (fMRI) and single neuron, local field potential (LFP) and electrocorticography (ECoG) in human cortex. Front Hum Neurosci 7:34

    PubMed Central  PubMed  Google Scholar 

  • Osborn AG (2012) Osborn’s brain: imaging, pathology, and anatomy, 1st edn. Lippincott Williams & Wilkins

    Google Scholar 

  • Osborn AG, Salzman KL, Barkovich AJ (2010) Diagnostic imaging – brain, 2nd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Ostrom QT, Barnholtz-Sloan JS (2011) Current state of our knowledge on brain tumor epidemiology. Curr Neurol Neurosci Rep 11(3):329–335

    PubMed  Google Scholar 

  • Ozdoba C, Nirkko AC et al (2002) Whole-brain functional magnetic resonance imaging of cerebral arteriovenous malformations involving the motor pathways. Neuroradiology 44(1):1–10

    CAS  PubMed  Google Scholar 

  • Palmer ED, Rosen HJ et al (2001) An event-related fMRI study of overt and covert word stem completion. Neuroimage 14(1 Pt 1):182–193

    CAS  PubMed  Google Scholar 

  • Parkin DM, Muir CS (1992) Cancer incidence in five continents. Comparability and quality of data. IARC Sci Publ 120:45–173

    PubMed  Google Scholar 

  • Parmar H, Sitoh YY, Yeo TT (2004) Combined magnetic resonance tractography and functional magnetic resonance imaging in evaluation of brain tumors involving the motor system. J Comput Assist Tomogr 28(4):551–556

    PubMed  Google Scholar 

  • Partovi S, Jacobi B, Rapps N, Zipp L, Karimi S, Rengier F, Lyo JK, Stippich C (2012a) Clinical standardized fMRI reveals altered language lateralization in patients with brain tumor. AJNR Am J Neuroradiol 33(11):2151–2157

    CAS  PubMed  Google Scholar 

  • Partovi S, Konrad F, Karimi S, Rengier F, Lyo JK, Zipp L, Nennig E, Stippich C (2012b) Effects of covert and overt paradigms in clinical language fMRI. Acad Radiol 19(5):518–525

    PubMed  Google Scholar 

  • Peck KK, Holodny AI (2007) fMRI clinical applications. In: Reiser MF, Semmler W, Hricak H (eds) Magnetic resonance tomography. Springer, Berlin, pp 1308–1331

    Google Scholar 

  • Penfield W (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443

    Google Scholar 

  • Penfield W (1950) The cerebral cortex of man. MacMillan, New York, 57 ff

    Google Scholar 

  • Pesaresi I, Cosottini M et al (2011) Reproducibility of BOLD localization of interictal activity in patients with focal epilepsy: intrasession and intersession comparisons. MAGMA 24(5):285–296

    PubMed  Google Scholar 

  • Petersen SE, Fox PT et al (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331(6157):585–589

    CAS  PubMed  Google Scholar 

  • Petrovich NM, Holodny AI et al (2004) Isolated translocation of Wernicke’s area to the right hemisphere in a 62-year-man with a temporo-parietal glioma. AJNR Am J Neuroradiol 25(1):130–133

    PubMed  Google Scholar 

  • Pouratian N, Bookheimer SY et al (2002) Utility of preoperative functional magnetic resonance imaging for identifying language cortices in patients with vascular malformations. J Neurosurg 97(1):21–32

    PubMed  Google Scholar 

  • Price CJ (2000) The anatomy of language: contributions from functional neuroimaging. J Anat 197(Pt 3):335–359

    PubMed Central  PubMed  Google Scholar 

  • Price CJ, Wise RJ et al (1996) Hearing and saying. The functional neuro-anatomy of auditory word processing. Brain 119(Pt 3):919–931

    PubMed  Google Scholar 

  • Priest AN, De Vita E et al (2006) EPI distortion correction from a simultaneously acquired distortion map using TRAIL. J Magn Reson Imaging 23(4):597–603

    PubMed  Google Scholar 

  • Puce A, Constable RT et al (1995) Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. J Neurosurg 83(2):262–270

    CAS  PubMed  Google Scholar 

  • Pujol J, Conesa G et al (1996) Presurgical identification of the primary sensorimotor cortex by functional magnetic resonance imaging. J Neurosurg 84(1):7–13

    CAS  PubMed  Google Scholar 

  • Pujol J, Conesa G et al (1998) Clinical application of functional magnetic resonance imaging in presurgical identification of the central sulcus. J Neurosurg 88(5):863–869

    CAS  PubMed  Google Scholar 

  • Raichle ME (1983) Positron emission tomography. Annu Rev Neurosci 6:249–267

    CAS  PubMed  Google Scholar 

  • Raichle ME, Fiez JA et al (1994) Practice-related changes in human brain functional anatomy during nonmotor learning. Cereb Cortex 4(1):8–26

    CAS  PubMed  Google Scholar 

  • Ramsey NF, Sommer IE et al (2001) Combined analysis of language tasks in fMRI improves assessment of hemispheric dominance for language functions in individual subjects. Neuroimage 13(4):719–733

    CAS  PubMed  Google Scholar 

  • Rasmussen IA, Lindseth F et al (2007) Functional neuronavigation combined with intra-operative 3D ultrasound: initial experiences during surgical resections close to eloquent brain areas and future direction in automatic brain shift compensation of preoperative data. Acta Neurochir 149(4):365–378

    PubMed  Google Scholar 

  • Rausch R, Silfvenious H et al (1993) Intra-arterial amobarbital procedures. In: Engel JJ (ed) Surgical treatment of the epilepsies. Raven Press, New York, pp 341–357

    Google Scholar 

  • Reinges MH, Krings T et al (2004) Preoperative mapping of cortical motor function: prospective comparison of functional magnetic resonance imaging and [15O]-H2O-positron emission tomography in the same co-ordinate system. Nucl Med Commun 25(10):987–997

    PubMed  Google Scholar 

  • Reinges MH, Krings T et al (2005) Prospective demonstration of short-term motor plasticity following acquired central pareses. Neuroimage 24(4):1248–1255

    PubMed  Google Scholar 

  • Roberts TP (2003) Functional magnetic resonance imaging (fMRI) processing and analysis. ASNR Electronic Learning Center Syllabus: 1–23

    Google Scholar 

  • Roessler K, Donat M et al (2005) Evaluation of preoperative high magnetic field motor functional MRI (3 Tesla) in glioma patients by navigated electrocortical stimulation and postoperative outcome. J Neurol Neurosurg Psychiatry 76(8):1152–1157

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rösler J, Niraula B et al (2014) Language mapping in healthy volunteers and brain tumor patients with a novel navigated TMS system: evidence of tumor-induced plasticity. Clin Neurophysiol 125(3):526–536

    PubMed  Google Scholar 

  • Roux FE, Tremoulet M (2002) Organization of language areas in bilingual patients: a cortical stimulation study. J Neurosurg 97(4):857–864

    PubMed  Google Scholar 

  • Roux FE, Ranjeva JP et al (1997) Motor functional MRI for presurgical evaluation of cerebral tumors. Stereotact Funct Neurosurg 68(1–4 Pt 1):106–111

    CAS  PubMed  Google Scholar 

  • Roux FE, Boulanouar K et al (1999a) Cortical intraoperative stimulation in brain tumors as a tool to evaluate spatial data from motor functional MRI. Invest Radiol 34(3):225–229

    CAS  PubMed  Google Scholar 

  • Roux FE, Boulanouar K et al (1999b) Usefulness of motor functional MRI correlated to cortical mapping in Rolandic low-grade astrocytomas. Acta Neurochir (Wien) 141(1):71–79

    CAS  Google Scholar 

  • Roux FE, Boulanouar K et al (2000) Functional MRI and intraoperative brain mapping to evaluate brain plasticity in patients with brain tumours and hemiparesis. J Neurol Neurosurg Psychiatry 69(4):453–463

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roux FE, Ibarrola D et al (2001) Methodological and technical issues for integrating functional magnetic resonance imaging data in a neuronavigational system. Neurosurgery 49(5):1145–1156; discussion 1156–1157

    CAS  PubMed  Google Scholar 

  • Roux FE, Boulanouar K et al (2003) Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery 52(6):1335–1345; discussion 1345–1347

    PubMed  Google Scholar 

  • Rueckert L, Appollonio I et al (1994) Magnetic resonance imaging functional activation of left frontal cortex during covert word production. J Neuroimaging 4(2):67–70

    CAS  PubMed  Google Scholar 

  • Ruge MI, Victor J et al (1999) Concordance between functional magnetic resonance imaging and intraoperative language mapping. Stereotact Funct Neurosurg 72(2–4):95–102

    CAS  PubMed  Google Scholar 

  • Rutten GJ, van Rijen PC et al (1999) Language area localization with three-dimensional functional magnetic resonance imaging matches intrasulcal electrostimulation in Broca’s area. Ann Neurol 46(3): 405–408

    CAS  PubMed  Google Scholar 

  • Rutten GJ, Ramsey NF et al (2002a) FMRI-determined language lateralization in patients with unilateral or mixed language dominance according to the Wada test. Neuroimage 17(1):447–460

    CAS  PubMed  Google Scholar 

  • Rutten GJ, Ramsey NF et al (2002b) Interhemispheric reorganization of motor hand function to the primary motor cortex predicted with functional magnetic resonance imaging and transcranial magnetic stimulation. J Child Neurol 17(4):292–297

    PubMed  Google Scholar 

  • Rutten GJ, Ramsey NF et al (2002c) Development of a functional magnetic resonance imaging protocol for intraoperative localization of critical temporoparietal language areas. Ann Neurol 51(3):350–360

    CAS  PubMed  Google Scholar 

  • Rutten GJ, Ramsey NF et al (2002d) Reproducibility of fMRI-determined language lateralization in individual subjects. Brain Lang 80(3):421–437

    CAS  PubMed  Google Scholar 

  • Sakai KL, Hashimoto R, Homae F (2001) Sentence processing in the cerebral cortex. Neurosci Res 39(1):1–10

    CAS  PubMed  Google Scholar 

  • Schiffbauer H, Berger MS et al (2003) Preoperative magnetic source imaging for brain tumor surgery: a quantitative comparison with intraoperative sensory and motor mapping. Neurosurg Focus 15(1):E7

    PubMed  Google Scholar 

  • Schlaggar BL, Brown TT et al (2002) Functional neuroanatomical differences between adults and school-age children in the processing of single words. Science 296(5572):1476–1479

    CAS  PubMed  Google Scholar 

  • Schlosser MJ, McCarthy G et al (1997) Cerebral vascular malformations adjacent to sensorimotor and visual cortex. Functional magnetic resonance imaging studies before and after therapeutic intervention. Stroke 28(6):1130–1137

    CAS  PubMed  Google Scholar 

  • Schlosser MJ, Luby M et al (1999) Comparative localization of auditory comprehension by using functional magnetic resonance imaging and cortical stimulation. J Neurosurg 91(4):626–635

    CAS  PubMed  Google Scholar 

  • Schreiber A, Hubbe U et al (2000) The influence of gliomas and nonglial space-occupying lesions on blood-oxygen-level-dependent contrast enhancement. AJNR Am J Neuroradiol 21(6):1055–1063

    CAS  PubMed  Google Scholar 

  • Schulder M, Maldjian JA et al (1998) Functional image-guided surgery of intracranial tumors located in or near the sensorimotor cortex. J Neurosurg 89(3):412–418

    CAS  PubMed  Google Scholar 

  • Schwindack C, Siminotto E et al (2005) Real-time functional magnetic resonance imaging (rt-fMRI) in patients with brain tumours: preliminary findings using motor and language paradigms. Br J Neurosurg 19(1):25–32

    CAS  PubMed  Google Scholar 

  • Shahar T, Rozovski U et al (2014) Preoperative imaging to predict intraoperative changes in tumor-to-corticospinal tract distance: an analysis of 45 cases using high-field intraoperative magnetic resonance imaging. Neurosurgery 75(1):23–30

    PubMed  Google Scholar 

  • Sharan A, Cher Ooi Y et al (2011) Intracarotid amobarbital procedure for epilepsy surgery. Epilepsy Behav 20(2):209–213

    PubMed  Google Scholar 

  • Shaywitz BA, Shaywitz SE et al (1995) Sex differences in the functional organization of the brain for language. Nature 373(6515): 607–609

    CAS  PubMed  Google Scholar 

  • Shimoni JS, Zhang D et al (2009) Resting state fluctuations in brain activity: a new paradigm for presurgical planning using fMRI. Acad Radiol 16(5):578–583

    Google Scholar 

  • Shinoura N, Yamada R et al (2005) Preoperative fMRI, tractography and continuous task during awake surgery for maintenance of motor function following surgical resection of metastatic tumor spread to the primary motor area. Minim Invasive Neurosurg 48(2):85–90

    CAS  PubMed  Google Scholar 

  • Simkins-Bullock J (2000) Beyond speech lateralization: a review of the variability, reliability, and validity of the intracarotid amobarbital procedure and its nonlanguage uses in epilepsy surgery candidates. Neuropsychol Rev 10(1):41–74

    CAS  PubMed  Google Scholar 

  • Smits M, Vernooij MW et al (2007) Incorporating functional MR imaging into diffusion tensor tractography in the preoperative assessment of the corticospinal tract in patients with brain tumors. AJNR Am J Neuroradiol 28(7):1354–1361

    CAS  PubMed  Google Scholar 

  • Spreer J, Quiske A et al (2001) Unsuspected atypical hemispheric dominance for language as determined by fMRI. Epilepsia 42(7):957–959

    CAS  PubMed  Google Scholar 

  • Springer JA, Binder JR et al (1999) Language dominance in neurologically normal and epilepsy subjects: a functional MRI study. Brain 122(Pt 11):2033–2046

    PubMed  Google Scholar 

  • Spritzer SD, Hoerth MT et al (2012) Determination of hemispheric language dominance in the surgical epilepsy patient. Neurologist 18(5):329–331

    PubMed  Google Scholar 

  • Stapleton SR, Kiriakopoulos E et al (1997) Combined utility of functional MRI, cortical mapping, and frameless stereotaxy in the resection of lesions in eloquent areas of brain in children. Pediatr Neurosurg 26(2):68–82

    CAS  PubMed  Google Scholar 

  • Stefanowicz J, Iżycka-Świeszewska E et al (2011) Brain metastases in paediatric patients: characteristics of a patient series and review of the literature. Folia Neuropathol 49(4):271–281

    PubMed  Google Scholar 

  • Steger TR, Jackson EF (2004) Real-time motion detection of functional MRI data. J Appl Clin Med Phys 5(2):64–70

    PubMed  Google Scholar 

  • Stippich C (2005) Clinical functional magnetic resonance imaging: basic principles and clinical applications. Radiol Up2date 5:317–336

    Google Scholar 

  • Stippich C (2010) Presurgical functional magnetic resonance imaging. Radiologe 50(2):110–122

    CAS  PubMed  Google Scholar 

  • Stippich C, Hofmann R et al (1999) Somatotopic mapping of the human primary somatosensory cortex by fully automated tactile stimulation using functional magnetic resonance imaging. Neurosci Lett 277(1):25–28

    CAS  PubMed  Google Scholar 

  • Stippich C, Kapfer D et al (2000) Robust localization of the contralateral precentral gyrus in hemiparetic patients using the unimpaired ipsilateral hand: a clinical functional magnetic resonance imaging protocol. Neurosci Lett 285(2):155–159

    CAS  PubMed  Google Scholar 

  • Stippich C, Heiland S et al (2002a) Functional magnetic resonance imaging: physiological background, technical aspects and prerequisites for clinical use. Rofo 174(1):43–49

    CAS  PubMed  Google Scholar 

  • Stippich C, Ochmann H, Sartor K (2002b) Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging. Neurosci Lett 331(1):50–54

    CAS  PubMed  Google Scholar 

  • Stippich C, Kress B et al (2003a) Preoperative functional magnetic resonance tomography (FMRI) in patients with rolandic brain tumors: indication, investigation strategy, possibilities and limitations of clinical application. Rofo 175(8):1042–1050

    CAS  PubMed  Google Scholar 

  • Stippich C, Mohammed J et al (2003b) Robust localization and lateralization of human language function: an optimized clinical functional magnetic resonance imaging protocol. Neurosci Lett 346(1–2):109–113

    CAS  PubMed  Google Scholar 

  • Stippich C, Romanowski A et al (2004) Fully automated localization of the human primary somatosensory cortex in one minute by functional magnetic resonance imaging. Neurosci Lett 364(2):90–93

    CAS  PubMed  Google Scholar 

  • Stippich C, Romanowski A et al (2005) Time-efficient localization of the human secondary somatosensory cortex by functional magnetic resonance imaging. Neurosci Lett 381(3):264–268

    CAS  PubMed  Google Scholar 

  • Stippich C, Blatow M et al (2007a) Global activation of primary motor cortex during voluntary movements in man. Neuroimage 34:1227–1237

    PubMed  Google Scholar 

  • Stippich C, Rapps N et al (2007b) Feasibility of routine preoperative functional magnetic resonance imaging for localizing and lateralizing language in 81 consecutive patients with brain tumors. Radiology 243:828–836

    PubMed  Google Scholar 

  • Szaflarski JP, Binder JR et al (2002) Language lateralization in left-handed and ambidextrous people: fMRI data. Neurology 59(2):238–244

    CAS  PubMed  Google Scholar 

  • Tarapore PE, Matthew CT (2012) Preoperative multimodal motor mapping: a comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J Neurosurg 117(2):354–362

    PubMed Central  PubMed  Google Scholar 

  • Ternovoi SK, Sinitsyn VE et al (2004) Localization of the motor and speech zones of the cerebral cortex by functional magnetic resonance tomography. Neurosci Behav Physiol 34(5):431–437

    CAS  PubMed  Google Scholar 

  • Thulborn K (2006) Clinical functional magnetic resonance imaging. In: Haacke EM (ed) Current protocols in magnetic resonance imaging. Wiley, New York, Last Update: 20 Aug 2013. ISBN 978-0-471-35345-4

    Google Scholar 

  • Thulborn KR, Shen GX (1999) An integrated head immobilization system and high-performance RF coil for fMRI of visual paradigms at 1.5 T. J Magn Reson 139(1):26–34

    CAS  PubMed  Google Scholar 

  • Towle VL, Khorasani L et al (2003) Noninvasive identification of human central sulcus: a comparison of gyral morphology, functional MRI, dipole localization, and direct cortical mapping. Neuroimage 19(3):684–697

    PubMed  Google Scholar 

  • Tozakidou M, Wenz H et al (2013) Primary motor cortex activation and lateralization in patients with tumors of the central region. NeuroImage Clin 2:221–228

    PubMed Central  PubMed  Google Scholar 

  • Tuntiyatorn L, Wuttiplakorn L, Laohawiriyakamol K (2011) Plasticity of the motor cortex in patients with brain tumors and arteriovenous malformations: a functional MR study. J Med Assoc Thai 94(9):1134–1140

    PubMed  Google Scholar 

  • Ulmer JL, Krouwer HG et al (2003) Pseudo-reorganization of language cortical function at fMR imaging: a consequence of tumor-induced neurovascular uncoupling. AJNR Am J Neuroradiol 24(2): 213–217

    PubMed  Google Scholar 

  • Ulmer JL, Salvan CV et al (2004) The role of diffusion tensor imaging in establishing the proximity of tumor borders to functional brain systems: implications for preoperative risk assessments and postoperative outcomes. Technol Cancer Res Treat 3(6):567–576

    PubMed  Google Scholar 

  • van der Kallen BF, Morris GL et al (1998) Hemispheric language dominance studied with functional MR: preliminary study in healthy volunteers and patients with epilepsy. AJNR Am J Neuroradiol 19(1):73–77

    PubMed  Google Scholar 

  • van der Zwaag W, Susan F et al (2009) FMRI at 1.5, 3 and 7 T: characterising BOLD signal changes. Neuroimage 47(4):1425–1434

    PubMed  Google Scholar 

  • Van Westen D, Skagerberg G et al (2005) Functional magnetic resonance imaging at 3 T as a clinical tool in patients with intracranial tumors. Acta Radiol 46(6):599–609

    PubMed  Google Scholar 

  • Voss J, Meier TB et al (2013) The role of secondary motor and language cortices in morbidity and mortality: a retrospective functional MRI study of surgical planning for patients with intracranial tumours. Neurosurg Focus 34(4):E7

    PubMed  Google Scholar 

  • Wada J, Rasmussen T (1960) Intracarotid injection of sodium amytal for the lateralization of cerebral speech dominance. Experimental and clinical observations. J Neurosurg 17:266–282

    Google Scholar 

  • Wagner K, Hader C et al (2012) Who needs a Wada test? Present clinical indications for amobarbital procedures. J Neurol Neurosurg Psychiatry 83(5):503–509

    PubMed  Google Scholar 

  • Warburton E, Wise RJ et al (1996) Noun and verb retrieval by normal subjects. Studies with PET. Brain 119(Pt 1):159–179

    PubMed  Google Scholar 

  • Weiskopf N, Veit R et al (2003) Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage 19(3): 577–586

    PubMed  Google Scholar 

  • Weiskopf N, Scharnowski F et al (2004) Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI). J Physiol Paris 98(4–6):357–373

    PubMed  Google Scholar 

  • Weiskopf N, Klose U et al (2005) Single-shot compensation of image distortions and BOLD contrast optimization using multi-echo EPI for real-time fMRI. Neuroimage 24(4):1068–1079

    PubMed  Google Scholar 

  • Wengenroth M, Blatow M, Guenther J, Akbar M, Tronnier VM, Stippich C (2011). Diagnostic benefits of presurgical fMRI in patients with brain tumours in the primary sensorimotor cortex. Eur Radiol 21(7):1517–25

    PubMed Central  PubMed  Google Scholar 

  • Westerveld K, Stoddard K, McCarthy K (1999) Case report of false lateralization using fMRI: comparison of language localization, Wada testing, and cortical stimulation. Arch Clin Neuropsychol 14:162–163

    Google Scholar 

  • Wienbruch C, Candia V et al (2006) A portable and low-cost fMRI compatible pneumatic system for the investigation of the somatosensory system in clinical and research environments. Neurosci Lett 398(3):183–188

    CAS  PubMed  Google Scholar 

  • Wirtz CR, Tronnier VM et al (1997) Image-guided neurosurgery with intraoperative MRI: update of frameless stereotaxy and radicality control. Stereotact Funct Neurosurg 68(1–4 Pt 1):39–43

    CAS  PubMed  Google Scholar 

  • Wise R, Chollet F et al (1991) Distribution of cortical neural networks involved in word comprehension and word retrieval. Brain 114(Pt 4):1803–1817

    PubMed  Google Scholar 

  • Wittek A, Kikinis R et al (2005) Brain shift computation using a fully nonlinear biomechanical model. Med Image Comput Comput Assist Interv 8(Pt 2):583–590

    PubMed  Google Scholar 

  • Woolsey CN, Erickson TC, Gilson WE (1979) Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation. J Neurosurg 51(4):476–506

    CAS  PubMed  Google Scholar 

  • Worthington C, Vincent DJ et al (1997) Comparison of functional magnetic resonance imaging for language localization and intracarotid speech amytal testing in presurgical evaluation for intractable epilepsy. Preliminary results. Stereotact Funct Neurosurg 69(1–4 Pt 2):197–201

    CAS  PubMed  Google Scholar 

  • Wunderlich G, Knorr U et al (1998) Precentral glioma location determines the displacement of cortical hand representation. Neurosurgery 42(1):18–26; discussion 26–27

    CAS  PubMed  Google Scholar 

  • Yetkin FZ, Mueller WM et al (1997) Functional MR activation correlated with intraoperative cortical mapping. AJNR Am J Neuroradiol 18(7):1311–1315

    CAS  PubMed  Google Scholar 

  • Yetkin FZ, Swanson S et al (1998) Functional MR of frontal lobe activation: comparison with Wada language results. AJNR Am J Neuroradiol 19(6):1095–1098

    CAS  PubMed  Google Scholar 

  • Yousry TA, Schmid UD et al (1995) Topography of the cortical motor hand area: prospective study with functional MR imaging and direct motor mapping at surgery. Radiology 195(1):23–29

    CAS  PubMed  Google Scholar 

  • Yousry TA, Schmid UD et al (1996) The central sulcal vein: a landmark for identification of the central sulcus using functional magnetic resonance imaging. J Neurosurg 85(4):608–617

    CAS  PubMed  Google Scholar 

  • Yousry TA, Schmid UD et al (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120(Pt 1):141–157

    PubMed  Google Scholar 

  • Yousry I, Naidich TP, Yousry TA (2001) Functional magnetic resonance imaging: factors modulating the cortical activation pattern of the motor system. Neuroimaging Clin N Am 11(2):195–202, viii

    CAS  PubMed  Google Scholar 

  • Zacà D, Jarso S, Pillai JJ (2013) Role of semantic paradigms for optimization of language mapping in clinical FMRI studies. AJNR Am J Neuroradiol 34(10):1966–1971

    PubMed  Google Scholar 

  • Zhang D, Johnston JM et al (2009) Preoperative sensorimotor mapping in brain tumor patients using spontaneous fluctuations in neuronal activity imaged with fMRI: initial experience. Neurosurgery 65(6 Suppl):226–236

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Stippich MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stippich, C., Blatow, M., Garcia, M. (2015). Task-Based Presurgical Functional MRI in Patients with Brain Tumors. In: Stippich, C. (eds) Clinical Functional MRI. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45123-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45123-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45122-9

  • Online ISBN: 978-3-662-45123-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics