Skip to main content

Clinical BOLD fMRI and DTI: Artifacts, Tips, and Tricks

  • Chapter
  • First Online:
Clinical Functional MRI

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 3138 Accesses

Abstract

DTI and BOLD functional MRI techniques suffer from many different types of artifacts. These artifacts can have a technical origin like susceptibility artifacts in specific brain regions or vibration and eddy-current artifacts, but they can also be related to physiology. The draining vein activation observed in the neighborhood of functionally active regions or flow artifacts are such physiologically induced artifacts. In clinical fMRI, there are also several specific effects. These can be pathology-induced reduction or absence of brain activation in the vicinity of lesions, which can lead to false interpretation of the resulting fMRI maps. As patients are most of the time ill, the pharmaceuticals they are taking can influence the BOLD signal, and the same applies to a lack of cooperation during the scan and head motion which is also detrimental for DTI acquisition. The success rate in clinical fMRI/DTI protocols is clearly related to the clinician’s/technician’s ability to recognize and cope with these technical, physiological, and patient-induced artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abduljalil AM, Robitaille PM (1999) Macroscopic susceptibility in ultra high field MRI. J Comput Assist Tomogr 23:832–841

    CAS  PubMed  Google Scholar 

  • Aguirre GK, Zarahn E, D’esposito M (1998) The variability of human, BOLD hemodynamic responses. Neuroimage 8:360–369. doi:10.1006/nimg.1998.0369

    CAS  PubMed  Google Scholar 

  • Baudendistel KT, Reichenbach JR, Metzner R, Schroeder J, Schad LR (1998) Comparison of functional MR-venography and EPI-BOLD fMRI at 1.5 T. Magn Reson Imaging 16:989–991

    CAS  PubMed  Google Scholar 

  • Biswal BB, Hyde JS (1997) Contour-based registration technique to differentiate between task-activated and head motion-induced signal variations in fMRI. Magn Reson Med 38:470–476

    CAS  PubMed  Google Scholar 

  • Biswal B, DeYoe AE, Hyde JS (1996) Reduction of physiological fluctuations in fMRI using digital filters. Magn Reson Med 35:107–113

    CAS  PubMed  Google Scholar 

  • Bizzi A, Nava S, Ferrè F, Castelli G, Aquino D, Ciaraffa F, Broggi G, DiMeco F, Piacentini S (2012) Aphasia induced by gliomas growing in the ventrolateral frontal region: assessment with diffusion MR tractography, functional MR imaging and neuropsychology. Cortex 48:255–272. doi:10.1016/j.cortex.2011.11.015

    PubMed  Google Scholar 

  • Boxerman JL, Bandettini PA, Kwong KK, Baker JR, Davis TL, Rosen BR, Weisskoff RM (1995) The intravascular contribution to fmri signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magn Reson Med 34:4–10

    CAS  PubMed  Google Scholar 

  • Braus DF, Brassen S (2005) Functional magnetic resonance imaging and antipsychotics. Overview and own data. Radiologe 45:178–185. doi:10.1007/s00117-004-1156-z

    CAS  PubMed  Google Scholar 

  • Breiter HC, Gollub RL, Weisskoff RM, Kennedy DN, Makris N, Berke JD, Goodman JM, Kantor HL, Gastfriend DR, Riorden JP, Mathew RT, Rosen BR, Hyman SE (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19:591–611

    CAS  PubMed  Google Scholar 

  • Bryan R, Kraut M (1998) Functional magnetic resonance imaging: you get what you (barely) see. Am J Neuroradiol 19:991–992

    CAS  PubMed  Google Scholar 

  • Bryant CA, Jackson SH (1998) Functional imaging of the brain in the evaluation of drug response and its application to the study of aging. Drugs Aging 13:211–222

    CAS  PubMed  Google Scholar 

  • Caramia F, Francia A, Mainero C, Tinelli E, Giuseppina M, Colonnese C, Bozzao L, Donatella M (2009) Neurophysiological and functional MRI evidence of reorganization of cortical motor areas in cerebral arteriovenous malformation. Magn Reson Imaging 27:1360–1369. doi:10.1016/j.mri.2009.05.029

    PubMed  Google Scholar 

  • Chen Y, Parrish T (2009) Caffeine dose effect on activation-induced BOLD and CBF responses. Neuroimage 46:577–583

    PubMed Central  PubMed  Google Scholar 

  • Chen CM, Hou BL, Holodny AI (2008) Effect of age and tumor grade on BOLD functional MR imaging in preoperative assessment of patients with glioma. Radiology 248:971–978. doi: 10.1148/radiol.2483071280

    PubMed  Google Scholar 

  • Cohen MS, DuBois RM (1999) Stability, repeatability, and the expression of signal magnitude in functional magnetic resonance imaging. J Magn Reson Imaging 10:33–40

    CAS  PubMed  Google Scholar 

  • Cohen ER, Rostrup E, Sidaros K, Lund TE, Paulson OB, Ugurbil K, Kim S-G (2004) Hypercapnic normalization of BOLD fMRI: comparison across field strengths and pulse sequences. Neuroimage 23:613–624. doi:10.1016/j.neuroimage.2004.06.021

    PubMed  Google Scholar 

  • D’Esposito M, Deouell LY, Gazzaley A (2003) Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci 4:863–872. doi:10.1038/nrn1246

    PubMed  Google Scholar 

  • Dagli MS, Ingeholm JE, Haxby JV (1999) Localization of cardiac-induced signal change in fMRI. Neuroimage 9:407–415. doi:10.1006/nimg.1998.0424

    CAS  PubMed  Google Scholar 

  • Davis T, Poldrack R a (2013) Measuring neural representations with fMRI: practices and pitfalls. Ann N Y Acad Sci 1296:108–134. doi:10.1111/nyas.12156

    PubMed  Google Scholar 

  • De Zwart JA, Van Gelderen P, Kellman P, Duyn JH (2002) Application of sensitivity-encoded echo-planar imaging for blood oxygen level-dependent functional brain imaging. Magn Reson Med 48:1011–1020

    PubMed  Google Scholar 

  • Debus J, Essig M, Schad LR, Wenz F, Baudendistel K, Knopp MV, Engenhart R, Lorenz WJ (2008) Functional magnetic resonance imaging in a stereotactic setup. Magn Reson Imaging 26:1007–1012

    Google Scholar 

  • Deichmann R, Gottfried J, Hutton C, Turner R (2003) Optimized EPI for fMRI studies of the orbitofrontal cortex. Neuroimage 19:430–441

    CAS  PubMed  Google Scholar 

  • Desmond JE, Annabel Chen SH (2002) Ethical issues in the clinical application of fMRI: factors affecting the validity and interpretation of activations. Brain Cogn 50:482–497

    PubMed  Google Scholar 

  • Devlin JT, Russell RP, Davis MH, Price CJ, Wilson J, Moss HE, Matthews PM, Tyler LK (2000) Susceptibility-induced loss of signal: comparing PET and fMRI on a semantic task. Neuroimage 11:589–600. doi:10.1006/nimg.2000.0595

    CAS  PubMed  Google Scholar 

  • Duerk JL, Simonetti OP (1991) Theoretical aspects of motion sensitivity and compensation in echo-planar imaging. J Magn Reson Imaging 1:643–650

    CAS  PubMed  Google Scholar 

  • Duong TQ, Yacoub E, Adriany G, Hu X, Andersen P, Vaughan JT, Uǧurbil K, Kim S-G (2004) Spatial specificity of high-resolution, spin-echo BOLD, and CBF fMRI at 7 T. Magn Reson Med 51:646–647

    Google Scholar 

  • Duyn JH, Moonen CT, Van Yperen GH, De Boer RW, Luyten PR (1994) Inflow versus deoxyhemoglobin effects in BOLD functional MRI using gradient echoes at 1.5 T. NMR Biomed 7:83–88

    CAS  PubMed  Google Scholar 

  • Dymarkowski S, Sunaert S, Van Oostende S, Van Hecke P, Wilms G, Demaerel P, Nuttin B, Plets C, Marchal G (1998) Functional MRI of the brain: localisation of eloquent cortex in focal brain lesion therapy. Eur Radiol 8:1573–1580

    CAS  PubMed  Google Scholar 

  • Edward V, Windischberger C, Cunnington R, Erdler M, Lanzenberger R, Mayer D, Endl W, Beisteiner R (2000) Quantification of fMRI artifact reduction by a novel plaster cast head holder. Hum Brain Mapp 11:207–213

    CAS  PubMed  Google Scholar 

  • Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex 7:181–192. doi:10.1093/cercor/7.2.181

    CAS  PubMed  Google Scholar 

  • Fandino J, Kollias SS, Wieser HG, Valavanis A, Yonekawa Y (1999) Intraoperative validation of functional magnetic resonance imaging and cortical reorganization patterns in patients with brain tumors involving the primary motor cortex. J Neurosurg 91:238–250

    CAS  PubMed  Google Scholar 

  • Fitzsimmons JR, Scott JD, Peterson DM, Wolverton BL, Webster CS, Lang PJ (1997) Integrated RF coil with stabilization for fMRI human cortex. Magn Reson Med 38:15–18

    CAS  PubMed  Google Scholar 

  • Frahm J, Merboldt KD, Hänicke W, Kleinschmidt A, Boecker H (1994) Brain or vein–oxygenation or flow? On signal physiology in functional MRI of human brain activation. NMR Biomed 7:45–53

    CAS  PubMed  Google Scholar 

  • Freire L, Mangin JF (2001) Motion correction algorithms may create spurious brain activations in the absence of subject motion. Neuroimage 14:709–722

    CAS  PubMed  Google Scholar 

  • Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SC, Frackowiak RS, Turner R (1995) Analysis of fMRI time-series revisited [see comments]. Neuroimage 2:45–53. doi:10.1006/nimg.1995.1007

    CAS  PubMed  Google Scholar 

  • Friston KJ, Holmes A, Poline JB, Price CJ, Frith CD (1996a) Detecting activations in PET and fMRI: levels of inference and power. Neuroimage 4:223–235. doi:10.1006/nimg.1996.0074

    CAS  PubMed  Google Scholar 

  • Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R (1996b) Movement-related effects in fMRI time-series. Magn Reson Med 35:346–355

    CAS  PubMed  Google Scholar 

  • Fujiwara N, Sakatani K, Katayama Y, Murata Y, Hoshino T, Fukaya C, Yamamoto T (2004) Evoked-cerebral blood oxygenation changes in false-negative activations in BOLD contrast functional MRI of patients with brain tumors. Neuroimage 21:1464–1471

    PubMed  Google Scholar 

  • Gallichan D, Scholz J, Bartsch A, Behrens TE, Robson MD, Miller KL (2010) Addressing a systematic vibration artifact in diffusion-weighted MRI. Hum Brain Mapp 31:193–202. doi:10.1002/hbm.20856

    PubMed  Google Scholar 

  • Ganslandt O, Buchfelder M, Hastreiter P, Grummich P, Fahlbusch R, Nimsky C (2004) Magnetic source imaging supports clinical decision making in glioma patients. Clin Neurol Neurosurg 107:20–26

    CAS  PubMed  Google Scholar 

  • Gao JH, Miller I, Lai S, Xiong J, Fox PT (1996) Quantitative assessment of blood inflow effects in functional MRI signals. Magn Reson Med 36:314–319

    CAS  PubMed  Google Scholar 

  • Gasser TG, Sandalcioglu EI, Wiedemayer H, Hans V, Gizewski E, Forsting M, Stolke D (2004) A novel passive functional MRI paradigm for preoperative identification of the somatosensory cortex. Neurosurg Rev 27:106–112

    PubMed  Google Scholar 

  • Gati JS, Menon RS, Ugurbil K, Rutt BK (1997) Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 38:296–302

    CAS  PubMed  Google Scholar 

  • Goense J, Merkle H, Logothetis N (2012) High-resolution fMRI reveals laminar differences in neurovascular coupling between positive and negative BOLD responses. Neuron 76:629–639

    CAS  PubMed  Google Scholar 

  • Gollub RL, Breiter HC, Kantor H, Kennedy D, Gastfriend D, Mathew RT, Makris N, Guimaraes A, Riorden J, Campbell T, Foley M, Hyman SE, Rosen B, Weisskoff R (1998) Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects. J Cereb Blood Flow Metab 18:724–734

    CAS  PubMed  Google Scholar 

  • Gross WL, Binder JR (2014) Alternative thresholding methods for fMRI data optimized for surgical planning. Neuroimage 84:554–561. doi:10.1016/j.neuroimage.2013.08.066

    PubMed Central  PubMed  Google Scholar 

  • Haacke EM, Hopkins A, Lai S, Buckley P, Friedman L, Meltzer H, Hedera P, Friedland R, Klein S, Thompson L (1994) 2D and 3D high resolution gradient echo functional imaging of the brain: venous contributions to signal in motor cortex studies. NMR Biomed 7:54–62

    CAS  PubMed  Google Scholar 

  • Håberg A, Kvistad KA, Unsgård G, Haraldseth O (2004) Preoperative blood oxygen level-dependent functional magnetic resonance imaging in patients with primary brain tumors: clinical application and outcome. Neurosurgery 54:902–914; discussion 914–915

    PubMed  Google Scholar 

  • Hahn B, Ross TJ, Yang Y, Kim I, Huestis M a (2007) Nicotine enhances visuospatial attention by deactivating areas of the resting brain default network. J Neurosci 27:3477–3489. doi:10.1523/JNEUROSCI.5129-06.2007

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hajnal JV, Myers R, Oatridge A, Schwieso JE, Young IR, Bydder GM (1994) Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn Reson Med 31:283–291

    CAS  PubMed  Google Scholar 

  • Hall D a, Gonçalves MS, Smith S, Jezzard P, Haggard MP, Kornak J (2002) A method for determining venous contribution to BOLD contrast sensory activation. Magn Reson Imaging 20:695–706

    PubMed  Google Scholar 

  • Haller S, Bartsch AJ (2009) Pitfalls in FMRI. Eur Radiol 19:2689–2706. doi:10.1007/s00330-009-1456-9

    PubMed  Google Scholar 

  • Heemskerk a M, Leemans A, Plaisier A, Pieterman K, Lequin MH, Dudink J (2013) Acquisition guidelines and quality assessment tools for analyzing neonatal diffusion tensor MRI data. AJNR Am J Neuroradiol 34:1496–1505. doi:10.3174/ajnr.A3465

    CAS  PubMed  Google Scholar 

  • Hill D, Smith A, Simmons A, Maurer C Jr, Cox TC, Elwes R, Brammer M, Hawkes DJ, Polkey CE (2000) Sources of error in comparing functional magnetic resonance imaging and invasive electrophysiological recordings. J Neurosurg 93:214–223

    CAS  PubMed  Google Scholar 

  • Hoogenraad FGC, Pouwels PJW, Hofman MBM, Rombouts SARB, Lavini C, Leach MO, Haacke EM (2000) High-resolution segmented EPI in a motor task fMRI study. Magn Reson Imaging 18:405–409. doi:10.1016/S0730-725X(00)00127-2

    CAS  PubMed  Google Scholar 

  • Hund-Georgiadis M, Mildner T, Georgiadis D, Weih K, Von Cramon DY (2003) Impaired hemodynamics and neural activation? A fMRI study of major cerebral artery stenosis. Neurology 62:1276–1279

    Google Scholar 

  • Hutton C, Bork A, Josephs O, Deichmann R, Ashburner J, Turner R (2002) Image distortion correction in fMRI: a quantitative evaluation. Neuroimage 16:217–240. doi:10.1006/nimg.2001.1054

    PubMed  Google Scholar 

  • Iacovella V, Hasson U (2011) The relationship between BOLD signal and autonomic nervous system functions: implications for processing of “physiological noise”. Magn Reson Imaging 29:1338–1345. doi:10.1016/j.mri.2011.03.006

    PubMed  Google Scholar 

  • Jacobsen LK, Gore JC, Skudlarski P, Lacadie CM, Jatlow P, Krystal JH (2002) Impact of intravenous nicotine on BOLD signal response to photic stimulation. Magn Reson Imaging 20:141–145

    CAS  PubMed  Google Scholar 

  • Jacobsen LK, D’Souza DC, Mencl WE, Pugh KR, Skudlarski P, Krystal JH (2004) Nicotine effects on brain function and functional connectivity in schizophrenia. Biol Psychiatry 55:850–858

    CAS  PubMed  Google Scholar 

  • Jiang A, Kennedy DN, Baker JR, Weisskoff RM, Tootell RBH, Woods RP, Benson RR, Kwong KK, Brady TJ, Rosen BR, Belliveau JW (1995) Motion detection and correction in functional MR imaging. Hum Brain Mapp 3:224–235. doi:10.1002/hbm.460030306

    Google Scholar 

  • Jiang Z, Krainik A, David O, Salon C, Troprès I, Hoffmann D, Pannetier N, Barbier EL, Bombìn ER, Warnking J, Pasteris C, Chabardes S, Berger F, Grand S, Segebarth C, Gay E, Le Bas J-F (2010) Impaired fMRI activation in patients with primary brain tumors. Neuroimage 52:538–548. doi:10.1016/j.neuroimage.2010.04.194

    PubMed  Google Scholar 

  • Johnstone T, Ores Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson RJ, Oakes TR (2006) Motion correction and the use of motion covariates in multiple-subject fMRI analysis. Hum Brain Mapp 27:779–788. doi:10.1002/hbm.20219

    PubMed  Google Scholar 

  • Jones DK, Cercignani M (2010) Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed 23:803–820. doi:10.1002/nbm.1543

    PubMed  Google Scholar 

  • Kansaku K, Kitazawa S, Kawano K (1998) Sequential hemodynamic activation of motor areas and the draining veins during finger movements revealed by cross-correlation between signals from fMRI. Neuroreport 9:1969–1974

    CAS  PubMed  Google Scholar 

  • Kantarci K, Avula R, Senjem M, Samikoglu A, Zhang B, Weigand S, Przybelski S, Edmonson H, Vemuri P, Knopman D, Ferman T, Boeve B, Petersen R, Jack C Jr (2010) Dementia with Lewy bodies and Alzheimer disease Neurodegenerative patterns characterized by DTI. Neurology 74:1814–1821

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kastrup A, Li TQ, Takahashi A, Glover GH, Moseley ME (1998) Functional magnetic resonance imaging of regional cerebral blood oxygenation changes during breath holding. Stroke A J Cereb Circ 29:2641–2645

    CAS  Google Scholar 

  • Keil B, Blau JN, Biber S, Hoecht P, Tountcheva V, Setsompop K, Triantafyllou C, Wald LL (2013) A 64-channel 3T array coil for accelerated brain MRI. Magn Reson Med 70:248–258. doi:10.1002/mrm.24427

    PubMed Central  PubMed  Google Scholar 

  • Kim DS, Duong TQ, Kim SG (2000) High-resolution mapping of iso-orientation columns by fMRI. Nat Neurosci 3:164–169

    CAS  PubMed  Google Scholar 

  • Kleiser R, Staempfli P, Valavanis A, Boesiger P, Kollias S (2010) Impact of fMRI-guided advanced DTI fiber tracking techniques on their clinical applications in patients with brain tumors. Neuroradiology 52:37–46. doi:10.1007/s00234-009-0539-2

    PubMed  Google Scholar 

  • Koch M, Norris D (2000) An assessment of eddy current sensitivity and correction in single-shot diffusion-weighted imaging. Phys Med Biol 45:3821–3832

    CAS  PubMed  Google Scholar 

  • Kriegeskorte N, Cusack R, Bandettini P (2010) How does an fMRI voxel sample the neuronal activity pattern: compact-kernel or complex spatiotemporal filter? Neuroimage 49:1965–1976. doi:10.1016/j.neuroimage.2009.09.059

    PubMed Central  PubMed  Google Scholar 

  • Krings T (2001a) Functional MRI for presurgical planning: problems, artefacts, and solution strategies. J Neurol Neurosurg Psychiatry 70:749–760. doi:10.1136/jnnp.70.6.749

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krings T (2001b) Metabolic and electrophysiological validation of functional MRI. J Neurol Neurosurg Psychiatry 71:762–771. doi:10.1136/jnnp.71.6.762

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kumari V, Gray JA, Ffytche DH, Mitterschiffthaler MT, Das M, Zachariah E, Vythelingum GN, Williams SCR, Simmons A, Sharma T (2003) Cognitive effects of nicotine in humans: an fMRI study. Neuroimage 19:1002–1013

    PubMed  Google Scholar 

  • Laurienti PJ, Field AS, Burdette JH, Maldjian JA, Yen Y-F, Moody DM (2002) Dietary caffeine consumption modulates fMRI measures. Neuroimage 17:751–757

    PubMed  Google Scholar 

  • Le Bihan D, Poupon C, Amadon A, Lethimonnier F (2006) Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging 24:478–488. doi:10.1002/jmri.20683

    PubMed  Google Scholar 

  • Le Rumeur E, Allard M, Poiseau E, Jannin P (2000) Role of the mode of sensory stimulation in presurgical brain mapping in which functional magnetic resonance imaging is used. J Neurosurg 93:427–431

    PubMed  Google Scholar 

  • Lee A, Glover G, Meyer C (1995) Discrimination of large venous vessels in time-course spiral blood-oxygen-level-dependent magnetic-resonance functional neuroimaging. Magn Reson Med 33:745–754

    CAS  PubMed  Google Scholar 

  • Lee C, Ward H, Sharbrough F, Meyer F, Marsh W, Elson C, So L, Cascino G, Shin C, Xu Y, Riederer S, Jack C Jr (1999) Assessment of functional MR imaging in neurosurgical planning. Am J Neuroradiol 20:1511–1519

    CAS  PubMed  Google Scholar 

  • Lee J-H, Telang FW, Springer CS, Volkow ND (2003) Abnormal brain activation to visual stimulation in cocaine abusers. Life Sci 73:1953–1961

    CAS  PubMed  Google Scholar 

  • Leemans A, Jones DK (2009) The B-matrix must be rotated when correcting for subject motion in DTI data. Magn Reson Med 61:1336–1349. doi:10.1002/mrm.21890

    PubMed  Google Scholar 

  • Lehéricy S, Biondi A, Sourour N (2002) Arteriovenous brain malformations: is functional MR imaging reliable for studying language reorganization in patients? Initial observations. Radiology 223:672–682

    PubMed  Google Scholar 

  • Levin JM, Ross MH, Mendelson JH, Kaufman MJ, Lange N, Maas LC, Mello NK, Cohen BM, Renshaw PF (1998) Reduction in BOLD fMRI response to primary visual stimulation following alcohol ingestion. Psychiatry Res 82:135–146

    CAS  PubMed  Google Scholar 

  • Levy L, Henkin R, Lin C, Hutter A, Schellinger D (1998) Increased brain activation in response to odors in patients with hyposmia after theophylline treatment demonstrated by fMRI. J Comput Assist Tomogr 22:760–770

    CAS  PubMed  Google Scholar 

  • Li SJ, Biswal B, Li Z, Risinger R, Rainey C, Cho JK, Salmeron BJ, Stein EA (2000) Cocaine administration decreases functional connectivity in human primary visual and motor cortex as detected by functional MRI. Magn Reson Med 43:45–51

    CAS  PubMed  Google Scholar 

  • Logothetis N (2000) Can current fMRI techniques reveal the micro-architecture of cortex? Nat Neurosci 3:413

    CAS  PubMed  Google Scholar 

  • Logothetis N (2002) The neural basis of the blood–oxygen–level–dependent functional magnetic resonance imaging signal. Philos Trans R Soc London Ser B Biol Sci 357:1003–1037

    Google Scholar 

  • Lowe M, Lurito J, Mathews V, Phillips MD, Hutchins GD (2000) Quantitative comparison of functional contrast from BOLD-weighted spin-echo and gradient-echo echoplanar imaging at 1.5 Tesla and H215O PET in the whole brain. J Cereb Blood Flow Metab 20:1331–1340

    CAS  PubMed  Google Scholar 

  • Lowen S, Nickerson L, Levin J (2009) Differential effects of acute cocaine and placebo administration on visual cortical activation in healthy subjects measured using BOLD fMRI. Pharmacol Biochem Behav 92:277–282

    PubMed Central  CAS  PubMed  Google Scholar 

  • Luchtmann M, Jachau K, Tempelmann C, Bernarding J (2010) Alcohol induced region-dependent alterations of hemodynamic response: implications for the statistical interpretation of pharmacological fMRI studies. Exp Brain Res 204:1–10. doi:10.1007/s00221-010-2277-4

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lüdemann L, Förschler A, Grieger W, Zimmer C (2006) BOLD signal in the motor cortex shows a correlation with the blood volume of brain tumors. J Magn Reson Imaging 23:435–443. doi:10.1002/jmri.20530

    PubMed  Google Scholar 

  • Maclaren J, Herbst M, Speck O, Zaitsev M (2013) Prospective motion correction in brain imaging: a review. Magn Reson Med 69:621–636. doi:10.1002/mrm.24314

    PubMed  Google Scholar 

  • Maldjian J, Atlas S, Howard R, Greenstein E, Alsop D, Detre J, Listerud J, D’Esposito M, Flamm E (1996) Functional magnetic resonance imaging of regional brain activity in patients with intracerebral arteriovenous malformations before surgical or endovascular therapy. J Neurosurg 84:477–483

    CAS  PubMed  Google Scholar 

  • Mandeville J, Jenkins B, Kosofsky BE, Moskowitz MA, Rosen BR, Marota JJ (2001) Regional sensitivity and coupling of BOLD and CBV changes during stimulation of rat brain. Magn Reson Med 45:443–447

    CAS  PubMed  Google Scholar 

  • Maravita A, Iriki A (2004) Tools for the body (schema). Trends Cogn Sci 8:79–86. doi:10.1016/j.tics.2003.12.008

    PubMed  Google Scholar 

  • Meier MP, Ilmberger J, Fesl G, Ruge MI (2013) Validation of functional motor and language MRI with direct cortical stimulation. Acta Neurochir (Wien) 155:675–683. doi:10.1007/s00701-013-1624-1

    CAS  Google Scholar 

  • Menon R (2002) Postacquisition suppression of large-vessel BOLD signals in high-resolution fMRI. Magn Reson Med 47:1–9

    PubMed  Google Scholar 

  • Menon R, Kim S-G (1999) Spatial and temporal limits in cognitive neuroimaging with fMRI. Trends Cogn Sci 3:207–216

    PubMed  Google Scholar 

  • Menon R, Ogawa S, Uǧurbil K (1995) High-temporal‐resolution studies of the human primary visual cortex at 4 T: teasing out the oxygenation contribution in FMRI. Int J Imaging Syst Technol 6:209–215

    Google Scholar 

  • Menon R, Thomas C, Gati J (1997) Investigation of BOLD contrast in fMRI using multi-shot EPI. NMR Biomed 10:179–182

    CAS  PubMed  Google Scholar 

  • Menon R, Gati J, Goodyear B, Luknowsky D, Thomas CG (1998) Spatial and temporal resolution of functional magnetic resonance imaging. Biochem Cell Biol 76:560–571

    CAS  PubMed  Google Scholar 

  • Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J, Harel N, Uğurbil K (2010) Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn Reson Med 63:1144–1153. doi:10.1002/mrm.22361

    PubMed Central  PubMed  Google Scholar 

  • Mohammadi S, Nagy Z, Hutton C, Josephs O, Weiskopf N (2012) Correction of vibration artifacts in DTI using phase-encoding reversal (COVIPER). Magn Reson Med 68:882–889. doi:10.1002/mrm.23308

    PubMed Central  PubMed  Google Scholar 

  • Moon C, Fukuda M, Park S, Kim S-G (2007) Neural interpretation of blood oxygenation level-dependent fMRI maps at submillimeter columnar resolution. J Neurosci 27:6892–6902

    CAS  PubMed  Google Scholar 

  • Morton D, Maravilla K, Meno J, Winn HR (2002) Systemic theophylline augments the blood oxygen level—dependent response to forepaw stimulation in rats. Am J Neuroradiol 23:588–593

    PubMed  Google Scholar 

  • Muresan L, Renken R, Roerdink J, Duifhuis H (2005) Automated correction of spin-history related motion artefacts in fMRI: simulated and phantom data. Biomed Eng IEEE Trans 52:1450–1460

    Google Scholar 

  • Murphy K, Harris AD, Wise RG (2011) Robustly measuring vascular reactivity differences with breath-hold: normalising stimulus-evoked and resting state BOLD fMRI data. Neuroimage 54:369–379. doi:10.1016/j.neuroimage.2010.07.059

    PubMed  Google Scholar 

  • Murphy K, Birn RM, Bandettini PA (2013) Resting-state fMRI confounds and cleanup. Neuroimage 80:349–359

    PubMed Central  PubMed  Google Scholar 

  • Nencka AS, Rowe DB (2007) Reducing the unwanted draining vein BOLD contribution in fMRI with statistical post-processing methods. Neuroimage 37:177–188. doi:10.1016/j.neuroimage.2007.03.075

    PubMed  Google Scholar 

  • Nitschke M, Melchert U, Hahn C, Otto V, Arnold H, Herrmann H-D, Nowak G, Westphal M, Wessel K (1998) Preoperative functional magnetic resonance imaging (fMRI) of the motor system in patients with tumours in the parietal lobe. Acta Neurochir 140:1223–1229

    CAS  PubMed  Google Scholar 

  • O’doherty J, Rolls E, Francis S, Bowtell R, McGlone F, Kobal G, Renner B, Ahne G (2000) Sensory-specific satiety-related olfactory activation of the human orbitofrontal cortex. Neuroreport 11:893–897

    PubMed  Google Scholar 

  • Ogawa S, Lee T (1990) Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurements and image simulation. Magn Reson Med 16:9–18

    CAS  PubMed  Google Scholar 

  • Ogawa S, Menon R, Tank D, Kim S, Merkle H, Ellermann J, Ugurbil K (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64:803–812

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oja J, Gillen J, Kauppinen R, Kraut M, van Zijl P (1999) Venous blood effects in spin-echo fMRI of human brain. Magn Reson Med 42:617–626

    CAS  PubMed  Google Scholar 

  • Orchard J, Atkins M (2003) Iterating registration and activation detection to overcome activation bias in fMRI motion estimates. Med Image Comput Comput Interv 2879:886–893

    Google Scholar 

  • Parrish T, Mulderink T, Gitelman D, Mesulam M (2001) Caffeine as a BOLD contrast booster. Neuroimage 13:1001

    Google Scholar 

  • Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE (2013) Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84:320–341. doi:10.1016/j.neuroimage.2013.08.048

    PubMed  Google Scholar 

  • Preibisch C, Pilatus U, Bunke J, Hoogenraad F, Zanella F, Lanfermann H (2003) Functional MRI using sensitivity-encoded echo planar imaging (SENSE-EPI). Neuroimage 19:412–421

    PubMed  Google Scholar 

  • Pruessmann K, Weiger M, Scheidegger M, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    CAS  PubMed  Google Scholar 

  • Qin L, van Gelderen P, Derbyshire JA, Jin F, Lee J, de Zwart JA, Tao Y, Duyn JH (2009) Prospective head-movement correction for high-resolution MRI using an in-bore optical tracking system. Magn Reson Med 62:924–934. doi:10.1002/mrm.22076

    PubMed Central  PubMed  Google Scholar 

  • Rack-Gomer A, Liau J, Liu T (2009) Caffeine reduces resting-state BOLD functional connectivity in the motor cortex. Neuroimage 46:56–63

    PubMed Central  PubMed  Google Scholar 

  • Rao S, Binder J, Bandettini P, Hammeke T, Yetkin F, Jesmanowicz A, Lisk L, Morris G, Mueller W, Estkowski L, Wong E, Haughton V, Hyde J (1993) Functional magnetic resonance imaging of complex human movements. Neurology 43:2311–2318

    CAS  PubMed  Google Scholar 

  • Reich D, Zackowski K, Gordon-Lipkin E, Smith S, Chodkowski B, Cutter G, Calabresi PA (2008) Corticospinal tract abnormalities are associated with weakness in multiple sclerosis. Am J Neuroradiol 29:333–339

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sage CA, Van Hecke W, Peeters R, Sijbers J, Robberecht W, Parizel P, Marchal G, Leemans A, Sunaert S (2009) Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis: revisited. Hum Brain Mapp 30:3657–3675. doi:10.1002/hbm.20794

    PubMed  Google Scholar 

  • Schiffbauer H, Ferrari P, Rowley H, Berger M, Roberts T (2001) Functional activity within brain tumors: a magnetic source imaging study. Neurosurgery 49:1313–1321

    CAS  PubMed  Google Scholar 

  • Schmidt C, Pruessmann K, Jaermann T, Lamerichs R, Boesiger P (2002) High-resolution fMRI using SENSE at 3 Tesla. Proc Int Soc Magn Reson Med 10:125

    Google Scholar 

  • Schreiber A, Hubbe U, Ziyeh S, Hennig J (2000) The influence of gliomas and non-glial space-occupying lesions on blood-oxygen-level-dependent contrast enhancement. AJNR Am J Neuroradiol 21:1055–1063

    CAS  PubMed  Google Scholar 

  • Seifritz E, Bilecen D, Hänggi D, Haselhorst R, Radü E, Wetzel S, Seelig J, Scheffler K (2000) Effect of ethanol on BOLD response to acoustic stimulation: implications for neuropharmacological fMRI. Psychiatry Res Neuroimaging 99:1–13

    CAS  Google Scholar 

  • Seto E, Sela G, McIlroy W, Black S, Staines W, Bronskill M, McIntosh A, Graham A (2001) Quantifying head motion associated with motor tasks used in fMRI. Neuroimage 14:284–297

    CAS  PubMed  Google Scholar 

  • Siero J, Hermes D, Hoogduin H, Luijten P, Petridou N, Ramsey N (2013) BOLD consistently matches electrophysiology in human sensorimotor cortex at increasing movement rates: a combined 7T fMRI and ECoG study on neurovascular coupling. J Cereb Blood Flow Metab 33:1448–1456

    PubMed Central  PubMed  Google Scholar 

  • Sinha S, Bastin M, Whittle I, Wardlaw J (2002) Diffusion tensor MR imaging of high-grade cerebral gliomas. Am J Neuroradiol 23:520–527

    PubMed  Google Scholar 

  • Skirboll S, Ojemann G, Berger M, Lettich E, Winn H (1996) Functional cortex and subcortical white matter located within gliomas. Neurosurgery 38:678–685

    CAS  PubMed  Google Scholar 

  • Small D, Voss J, Mak Y, Simmons K, Parrish T, Gitelman D (2004) Experience-dependent neural integration of taste and smell in the human brain. J Neurophysiol 92:1892–1903

    PubMed  Google Scholar 

  • Smits M, Peeters RR, Van Hecke P, Sunaert S (2007) A 3 T event-related functional magnetic resonance imaging (fMRI) study of primary and secondary gustatory cortex localization using natural tastants. Neuroradiology 49:61–71. doi:10.1007/s00234-006-0160-6

    PubMed  Google Scholar 

  • Sodickson D, Manning W (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603

    CAS  PubMed  Google Scholar 

  • Song A, Popp C, Mao J, Dixon W (2000) fMRI: methodology–acquisition and processing. Adv Neurol 83:177–185

    CAS  PubMed  Google Scholar 

  • Srivastava G, Crottaz-Herbette S, Lau K, Glover G, Menon V (2005) ICA-based procedures for removing ballistocardiogram artifacts from EEG data acquired in the MRI scanner. Neuroimage 24:50–60

    CAS  PubMed  Google Scholar 

  • Stippich C, Kress B, Ochmann H, Tronnier V, Sartor K (2003) Preoperative functional magnetic resonance tomography (FMRI) in patients with rolandic brain tumors: indication, investigation strategy, possibilities and limitations of clinical application. Röfo 175:1042–1050

    CAS  PubMed  Google Scholar 

  • Sunaert S, Dymarkowski S, Van Oostende S, Van Hecke P, Wilms GMG (1998) Functional magnetic resonance imaging (fMRI) visualises the brain at work. Acta Neurol Belg 98:8–16

    CAS  PubMed  Google Scholar 

  • Thesen S, Heid O, Mueller E, Schad LR (2000) Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magn Reson Med 44:457–465

    CAS  PubMed  Google Scholar 

  • Toh CH, Wei K-C, Ng S-H, Wan Y-L, Lin C-P, Castillo M (2011) Differentiation of brain abscesses from necrotic glioblastomas and cystic metastatic brain tumors with diffusion tensor imaging. AJNR Am J Neuroradiol 32:1646–1651. doi:10.3174/ajnr.A2581

    CAS  PubMed  Google Scholar 

  • Tomasi D, Volkow ND, Wang R, Carrillo JH, Maloney T, Alia-Klein N, Woicik PA, Telang F, Goldstein RZ (2010) Disrupted functional connectivity with dopaminergic midbrain in cocaine abusers. PLoS One 5:10815

    Google Scholar 

  • Tomczak RJ, Wunderlich AP, Wang Y, Braun V, Antoniadis G, Görich J, Richter H-P, Brambs H-J (2000) fMRI for preoperative neurosurgical mapping of motor cortex and language in a clinical setting. J Comput Assist Tomogr 24:927–934

    CAS  PubMed  Google Scholar 

  • Tournier J-D, Mori S, Leemans A (2011) Diffusion tensor imaging and beyond. Magn Reson Med 65:1532–1556. doi:10.1002/mrm.22924

    PubMed Central  PubMed  Google Scholar 

  • Turner R (2002) How much cortex can a vein drain? Downstream dilution of activation-related cerebral blood oxygenation changes. Neuroimage 16:1062–1067. doi:10.1006/nimg.2002.1082

    PubMed  Google Scholar 

  • Turner R, Jezzard P, Wen H (1993) Functional mapping of the human visual cortex at 4 and 1.5 tesla using deoxygenation contrast EPI. Magn Reson Med 29:277–279

    CAS  PubMed  Google Scholar 

  • Ugurbil K, Xiaoping H, Wei C, Zhu X-H, Kim S-G, Georgopoulos A (1999) Functional mapping in the human brain using high magnetic fields. Philos Trans R Soc Lond B Biol Sci 354:1195–1213

    PubMed Central  CAS  PubMed  Google Scholar 

  • Uludağ K, Müller-Bierl B, Uğurbil K (2009) An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging. Neuroimage 48:150–165. doi:10.1016/j.neuroimage.2009.05.051

    PubMed  Google Scholar 

  • Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ-F, Bruno M-A, Boveroux P, Schnakers C, Soddu A, Perlbarg V, Ledoux D, Brichant J-F, Moonen G, Maquet P, Greicius MD, Laureys S, Boly M (2010) Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 133:161–171. doi:10.1093/brain/awp313

    PubMed Central  PubMed  Google Scholar 

  • Voyvodic JT, Petrella JR, Friedman AH (2009) fMRI activation mapping as a percentage of local excitation: consistent presurgical motor maps without threshold adjustment. J Magn Reson Imaging 29:751–759. doi:10.1002/jmri.21716

    PubMed  Google Scholar 

  • Ward HA, Riederer SJ, Grimm RC, Ehman RL, Felmlee JP, Jack CR (2000) Prospective multiaxial motion correction for fMRI. Magn Reson Med 43:459–469

    CAS  PubMed  Google Scholar 

  • Weisskoff R (1995) Functional MRI: are we all moving towards artifactual conclusions?‐or fMRI fact or fancy? NMR Biomed 8:101–103

    CAS  PubMed  Google Scholar 

  • Weisskoff R (1996) Simple measurement of scanner stability for functional NMR imaging of activation in the brain. Magn Reson Med 36:643–645

    CAS  PubMed  Google Scholar 

  • Windischberger C, Langenberger H, Sycha T, Tschernko EM, Fuchsjäger-Mayerl G, Schmetterer L, Moser E (2002) On the origin of respiratory artifacts in BOLD-EPI of the human brain. Magn Reson Imaging 20:575–582

    PubMed  Google Scholar 

  • Yamada K, Naruse S, Nakajima K, Furuya S, Morishita H, Kizu O, Maeda T, Takeo K, Shimizu K (1997) Flow velocity of the cortical vein and its effect on functional brain MRI at 1.5 t: preliminary results by Cine-MR venography. J Magn Reson Imaging 7:347–352

    CAS  PubMed  Google Scholar 

  • Yang X, Hyder F, Shulman R (1997) Functional MRI BOLD signal coincides with electrical activity in the rat whisker barrels. Magn Reson Med 38:874–877

    CAS  PubMed  Google Scholar 

  • Zeffiro T (1996) Clinical functional image analysis: artifact detection and reduction. Neuroimage 4:S95–S100

    CAS  PubMed  Google Scholar 

  • Zhang X, De Moortele V, Pfeuffer J, Hu X (2001) Elimination of k-space spikes in fMRI data. Magn Reson Imaging 19:1037–1041

    CAS  PubMed  Google Scholar 

  • Zou Q, Long X, Zuo X, Yan C, Zhu C, Yang Y, Liu D, He Y, Zang Y (2009) Functional connectivity between the thalamus and visual cortex under eyes closed and eyes open conditions: a resting-state fMRI study. Hum Brain Mapp 30:3066–3078. doi:10.1002/hbm.2072810.1002/hbm.20728

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peeters, R., Sunaert, S. (2015). Clinical BOLD fMRI and DTI: Artifacts, Tips, and Tricks. In: Stippich, C. (eds) Clinical Functional MRI. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45123-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45123-6_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45122-9

  • Online ISBN: 978-3-662-45123-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics