Skip to main content

Presurgical Functional MRI and Diffusion Tensor Imaging

  • Chapter
  • First Online:
  • 2940 Accesses

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Functional magnetic resonance imaging (fMRI) provides noninvasive localisation and lateralisation of specific brain functions by measuring local hemodynamic changes coupled to neuronal activation. Different magnetic properties of oxygenated (diamagnetic) and deoxygenated (paramagnetic) hemoglobin are exploited to generate the blood oxygen level dependent (BOLD) contrast. Diffusion tensor magnetic resonance imaging (DTI) measures anisotropic (directional) diffusion of protons along myelinated fibers and thereby provides detailed information on the white matter architecture. Specific white matter tracts can be reconstructed using diffusion tensor tractography (DTT). During the last two decades both novel MR-modalities have revolutionised the imaging research on human brain function and structural connectivity under physiological and pathological conditions.

Task-based presurgical fMRI in patients with brain tumors or epilepsies represents the best established and validated clinical application. Essential cortical motor and language areas can be localised and the language dominant hemisphere can be determined prior to treatment. DTI and DTT provide complimentary data on important white matter connections, e.g., the pyramidal tract and arcuate fascicle. This imaging information is indispensible to establish the best possible treatment for each individual patient, and to achieve the ultimate goal of surgery: function preserving complete or most radical removal of the pathology. To this end fMRI and DTI are integrated meaningfully into functional neuronavigation. While promising, resting-state fMRI is currently still under initial clinical investigation.

The responsible clinical application requires standardised imaging and data processing as well as a profound knowledge of the imaging techniques employed, the underlying functional neuroanatomy, physiology and pathology, neuroplastic alterations, influencing factors, artifacts, pitfalls, validity and limitations. Finally, information on other functional neuroimaging modalities and multimodal integration is essential.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abou-Khalil B, Schlaggar BL (2002) Is it time to replace the Wada test? Neurology 59(2):160–161

    PubMed  Google Scholar 

  • Amunts K, Schleicher A et al (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412(2):319–341

    CAS  PubMed  Google Scholar 

  • Amunts K, Malikovic A et al (2000) Brodmann’s areas 17 and 18 brought into stereotaxic space-where and how variable? Neuroimage 11(1):66–84

    CAS  PubMed  Google Scholar 

  • Bandettini PA, Wong EC et al (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25(2):390–397

    CAS  PubMed  Google Scholar 

  • Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103(3):247–254

    CAS  PubMed  Google Scholar 

  • Bauer MH, Kuhnt D et al (2013) Reconstruction of white matter tracts via repeated deterministic streamline tracking – initial experience. PLoS One 8(5):e63082. doi:10.1371/journal.pone.0063082, Print 2013

    PubMed Central  CAS  PubMed  Google Scholar 

  • Baumann SB, Noll DC et al (1995) Comparison of functional magnetic resonance imaging with positron emission tomography and magnetoencephalography to identify the motor cortex in a patient with an arteriovenous malformation. J Image Guid Surg 1(4):191–197

    CAS  PubMed  Google Scholar 

  • Baxendale S (2002) The role of functional MRI in the presurgical investigation of temporal lobe epilepsy patients: a clinical perspective and review. J Clin Exp Neuropsychol 24(5):664–676

    PubMed  Google Scholar 

  • Belliveau JW, Kennedy DN Jr et al (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254(5032):716–719

    CAS  PubMed  Google Scholar 

  • Benbadis SR, Binder JR et al (1998) Is speech arrest during wada testing a valid method for determining hemispheric representation of language? Brain Lang 65(3):441–446

    CAS  PubMed  Google Scholar 

  • Berger H (1929) Über das Elektroenzephalogramm des Menschen. Arch Psychiatr Nervenk 87:527–570

    Google Scholar 

  • Bick AS, Mayer A, Levin N (2012) From research to clinical practice: implementation of functional magnetic imaging and white matter tractography in the clinical environment. J Neurol Sci 312(1–2):158–165. doi:10.1016/j.jns.2011.07.040, Epub 2011 Aug 23

    PubMed  Google Scholar 

  • Binder JR, Achten E et al (2002) Functional MRI in epilepsy. Epilepsia 43(Suppl 1):51–63

    Google Scholar 

  • Bittar RG, Olivier A et al (1999) Presurgical motor and somatosensory cortex mapping with functional magnetic resonance imaging and positron emission tomography. J Neurosurg 91(6):915–921

    CAS  PubMed  Google Scholar 

  • Buckner RL, Bandettini PA et al (1996) Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proc Natl Acad Sci U S A 93(25):14878–14883

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cedzich C, Taniguchi M et al (1996) Somatosensory evoked potential phase reversal and direct motor cortex stimulation during surgery in and around the central region. Neurosurgery 38(5):962–970

    CAS  PubMed  Google Scholar 

  • Centeno M, Carmichael DW (2014) Network connectivity in epilepsy: resting state fMRI and EEG-fMRI contributions. Front Neurol 5:93. doi:10.3389/fneur.2014.00093, eCollection 2014

    PubMed Central  PubMed  Google Scholar 

  • Chiang S, Levin HS, Haneef Z (2014) Computer-automated focus lateralization of temporal lobe epilepsy using fMRI. J Magn Reson Imaging. doi:10.1002/jmri.24696

    PubMed  Google Scholar 

  • Dimou S, Battisti RA et al (2013) A systematic review of functional magnetic resonance imaging and diffusion tensor imaging modalities used in presurgical planning of brain tumour resection. Neurosurg Rev 36(2):205–214; discussion 214. doi:10.1007/s10143-012-0436-8, Epub 2012 Nov 29

    Google Scholar 

  • Cortez-Conradis D, Favila R et al (2013) Diagnostic performance of regional DTI-derived tensor metrics in glioblastoma multiforme: simultaneous evaluation of p, q, L, Cl, Cp, Cs, RA, RD, AD, mean diffusivity and fractional anisotropy. Eur Radiol 23(4):1112–1121. doi:10.1007/s00330-012-2688-7, Epub 2012 Oct 21

    PubMed  Google Scholar 

  • Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173

    CAS  PubMed  Google Scholar 

  • Detre JA, Leigh JS et al (1992) Perfusion imaging. Magn Reson Med 23(1):37–45

    CAS  PubMed  Google Scholar 

  • Dimou S, Battisti RA et al (2013b) A systematic review of functional magnetic resonance imaging and diffusion tensor imaging modalities used in presurgical planning of brain tumour resection. Neurosurg Rev 36(2):205–214. doi:10.1007/s10143-012-0436-8; discussion 214, Epub 2012 Nov 29

    CAS  PubMed  Google Scholar 

  • Duffau H, Capelle L et al (1999) Intra-operative direct electrical stimulations of the central nervous system: the Salpetriere experience with 60 patients. Acta Neurochir (Wien) 141(11):1157–1167

    CAS  Google Scholar 

  • Duffau H, Capelle L et al (2002) Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain 125(Pt 1):199–214

    PubMed  Google Scholar 

  • Duffau H, Capelle L et al (2003) Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a consecutive series of 103 patients. J Neurosurg 98(4):764–778

    PubMed  Google Scholar 

  • Fernandez G, de Greiff A et al (2001) Language mapping in less than 15 minutes: real-time functional MRI during routine clinical investigation. Neuroimage 14(3):585–594

    CAS  PubMed  Google Scholar 

  • Fesl G, Moriggl B et al (2003) Inferior central sulcus: variations of anatomy and function on the example of the motor tongue area. Neuroimage 20(1):601–610

    CAS  PubMed  Google Scholar 

  • Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A 83(4):1140–1444

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fox PT, Mintun MA et al (1986) Mapping human visual cortex with positron emission tomography. Nature 323(6091):806–809

    CAS  PubMed  Google Scholar 

  • Frahm J, Merboldt KD et al (1994) Brain or vein – oxygenation or flow? On signal physiology in functional MRI of human brain activation. NMR Biomed 7(1–2):45–53

    CAS  PubMed  Google Scholar 

  • Friston K (1996) Statistical parametric mapping and other analyses of functional imaging data. In: John M, Toga AW (eds) Brain mapping: the methods. Academic Press, New York, pp 363–386

    Google Scholar 

  • Gaillard WD, Bookheimer SY, Cohen M (2000) The use of fMRI in neocortical epilepsy. Adv Neurol 84:391–404

    CAS  PubMed  Google Scholar 

  • Gevins A (1995) High-resolution electroencephalographic studies of cognition. Adv Neurol 66:181–195; discussion 195–198

    CAS  PubMed  Google Scholar 

  • Gevins A, Leong H et al (1995) Mapping cognitive brain function with modern high-resolution electroencephalography. Trends Neurosci 18(10):429–436

    CAS  PubMed  Google Scholar 

  • Goa PE, Koopmans PJ et al (2014) BOLD fMRI signal characteristics of S1 and S2-SSFP at 7 Tesla. Front Neurosci 8:49. doi:10.3389/fnins.2014.00049

    PubMed Central  PubMed  Google Scholar 

  • Gold S, Christian B et al (1998) Functional MRI statistical software packages: a comparative analysis. Hum Brain Mapp 6(2):73–84

    CAS  PubMed  Google Scholar 

  • Grabowski TJ (2000) Investigating language with functional neuroimaging. In: John M, Toga AW (eds) Brain mapping: the systems. Academic Press, San Diego, pp 425–461

    Google Scholar 

  • Grummich P, Nimsky C et al (2006) Combining fMRI and MEG increases the reliability of presurgical language localization: a clinical study on the difference between and congruence of both modalities. Neuroimage 32(4):1793–1803

    PubMed  Google Scholar 

  • Hämäläinen M, Ilmoniemi RJ et al (1993) Magnetoencephalography -theory, instrumentation and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–487

    Google Scholar 

  • Hari R, Ilmoniemi RJ (1986) Cerebral magnetic fields. Crit Rev Biomed Eng 14(2):93–126

    CAS  PubMed  Google Scholar 

  • Hirsch J, Ruge MI et al (2000) An integrated functional magnetic resonance imaging procedure for preoperative mapping of cortical areas associated with tactile, motor, language, and visual functions. Neurosurgery 47(3):711–721; discussion 721–722

    CAS  PubMed  Google Scholar 

  • Holman BL, Devous MD Sr (1992) Functional brain SPECT: the emergence of a powerful clinical method. J Nucl Med 33(10):1888–1904

    CAS  PubMed  Google Scholar 

  • Holodny AI, Schulder M et al (1999) Decreased BOLD functional MR activation of the motor and sensory cortices adjacent to a glioblastoma multiforme: implications for image-guided neurosurgery. AJNR Am J Neuroradiol 20(4):609–612

    CAS  PubMed  Google Scholar 

  • Holodny AI, Schulder M et al (2000) The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neurosurgery. AJNR Am J Neuroradiol 21(8):1415–1422

    CAS  PubMed  Google Scholar 

  • Holodny AI, Schwartz TH et al (2001) Tumor involvement of the corticospinal tract: diffusion magnetic resonance tractography with intraoperative correlation. J Neurosurg 95(6):1082

    CAS  PubMed  Google Scholar 

  • Holodny AI, Gor DM et al (2005) Diffusion-tensor MR tractography of somatotopic organization of corticospinal tracts in the internal capsule: initial anatomic results in contradistinction to prior reports. Radiology 234(3):649–653

    PubMed  Google Scholar 

  • Hua J, Qin Q et al (2013) Whole-brain three-dimensional T2-weighted BOLD functional magnetic resonance imaging at 7 Tesla. Magn Reson Med. doi:10.1002/mrm.25055

    Google Scholar 

  • Huber L, Goense J et al (2014) Investigation of the neurovascular coupling in positive and negative BOLD responses in human brain at 7T. Neuroimage 97:349–362

    PubMed  Google Scholar 

  • Hulvershorn J, Bloy L et al (2005a) Spatial sensitivity and temporal response of spin echo and gradient echo bold contrast at 3 T using peak hemodynamic activation time. Neuroimage 24(1):216–223

    PubMed  Google Scholar 

  • Hulvershorn J, Bloy L et al (2005b) Temporal resolving power of spin echo and gradient echo fMRI at 3T with apparent diffusion coefficient compartmentalization. Hum Brain Mapp 25(2):247–258

    PubMed  Google Scholar 

  • Kallenberg K, Goldmann T et al (2013) Glioma infiltration of the corpus callosum: early signs detected by DTI. J Neurooncol 112(2):217–222. doi:10.1007/s11060-013-1049-y, Epub 2013 Jan 24

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kleiser R, Staempfli P et al (2010) Impact of fMRI-guided advanced DTI fiber tracking techniques on their clinical applications in patients with brain tumors. Neuroradiology 52(1):37–46. doi:10.1007/s00234-009-0539-2, Epub 2009 May 29

    PubMed  Google Scholar 

  • Kober H, Nimsky C et al (2001) Correlation of sensorimotor activation with functional magnetic resonance imaging and magnetoencephalography in presurgical functional imaging: a spatial analysis. Neuroimage 14(5):1214–1228

    CAS  PubMed  Google Scholar 

  • Krings T, Reinges MH et al (2001) Functional and diffusion-weighted magnetic resonance images of space-occupying lesions affecting the motor system: imaging the motor cortex and pyramidal tracts. J Neurosurg 95(5):816–824

    CAS  PubMed  Google Scholar 

  • Krings T, Reinges MH et al (2002) Factors related to the magnitude of T2∗ MR signal changes during functional imaging. Neuroradiology 44(6):459–466

    CAS  PubMed  Google Scholar 

  • Kuhnt D, Bauer MH, Nimsky C (2012a) Brain shift compensation and neurosurgical image fusion using intraoperative MRI: current status and future challenges. Crit Rev Biomed Eng 40(3):175–185

    PubMed  Google Scholar 

  • Kuhnt D, Bauer MH et al (2012b) Intraoperative visualization of fiber tracking based reconstruction of language pathways in glioma surgery. Neurosurgery 70(4):911–919. doi:10.1227/NEU.0b013e318237a807; discussion 919–920

    PubMed  Google Scholar 

  • Kuhnt D, Bauer MH et al (2013a) Optic radiation fiber tractography in glioma patients based on high angular resolution diffusion imaging with compressed sensing compared with diffusion tensor imaging – initial experience. PLoS One 8(7):e70973. doi:10.1371/journal.pone.0070973, Print 2013

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kuhnt D, Bauer MH et al (2013b) Functional imaging: where do we go from here? J Neurosurg Sci 57(1):1–11

    CAS  PubMed  Google Scholar 

  • Kwong KK, Belliveau JW et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89(12):675–679

    Google Scholar 

  • Lang S, Duncan N, Northoff G (2014) Resting-state functional magnetic resonance imaging: review of neurosurgical applications. Neurosurgery 74(5):453–464. doi:10.1227/NEU.0000000000000307; discussion 464–465

    PubMed  Google Scholar 

  • LeBihan D (2006) From Brownian motion to mind imaging: diffusion MRI. Bull Acad Natl Med 190(8):1605–1627; discussion 1627

    Google Scholar 

  • LeBihan D (2013) Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure. Radiology 268(2):318–322. doi:10.1148/radiol.13130420

    Google Scholar 

  • LeBihan D, Johansen-Berg H (2012) Diffusion MRI at 25: exploring brain tissue structure and function. Neuroimage 61(2):324–341. doi:10.1016/j.neuroimage.2011.11.006, Epub 2011 Nov 20

    Google Scholar 

  • LeBihan D, Mangin JF et al (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13(4):534–546

    CAS  Google Scholar 

  • Leclercq D, Delmaire C et al (2011) Diffusion tractography: methods, validation and applications in patients with neurosurgical lesions. Neurosurg Clin N Am 22(2):253–268. doi:10.1016/j.nec.2010.11.004, ix

    PubMed  Google Scholar 

  • Lee CC, Ward HA et al (1999) Assessment of functional MR imaging in neurosurgical planning. AJNR Am J Neuroradiol 20(8):1511–1519

    CAS  PubMed  Google Scholar 

  • Lee MH, Smyser CD, Shimony JS (2013) Resting-state fMRI: a review of methods and clinical applications. AJNR Am J Neuroradiol 34(10):1866–1872. doi:10.3174/ajnr.A3263, Epub 2012 Aug 30

    PubMed Central  CAS  PubMed  Google Scholar 

  • Logothetis NK (2002) The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci 357(1424):1003–1037

    PubMed Central  PubMed  Google Scholar 

  • Logothetis NK (2003) The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 23(10):3963–3971

    CAS  PubMed  Google Scholar 

  • Logothetis NK, Pfeuffer J (2004) On the nature of the BOLD fMRI contrast mechanism. Magn Reson Imaging 22(10):1517–1531

    PubMed  Google Scholar 

  • Logothetis NK, Wandell BA (2004) Interpreting the BOLD signal. Annu Rev Physiol 66:735–769

    CAS  PubMed  Google Scholar 

  • Logothetis NK, Pauls J et al (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157

    CAS  PubMed  Google Scholar 

  • Martino J, Honma SM et al (2011) Resting functional connectivity in patients with brain tumors in eloquent areas. Ann Neurol 69(3):521–532. doi:10.1002/ana.22167, Epub 2011 Mar 11

    PubMed Central  PubMed  Google Scholar 

  • Mazziotta JC, Phelps ME et al (1982) Tomographic mapping of human cerebral metabolism: auditory stimulation. Neurology 32(9):921–937

    CAS  PubMed  Google Scholar 

  • Menon RS, Ogawa S et al (1995) BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: echoplanar imaging correlates with previous optical imaging using intrinsic signals. Magn Reson Med 33(3):453–459

    CAS  PubMed  Google Scholar 

  • Mitchell TJ, Hacker CD et al (2013) A novel data-driven approach to preoperative mapping of functional cortex using resting-state functional magnetic resonance imaging. Neurosurgery 73(6):969–982. doi:10.1227/NEU.0000000000000141; discussion 982–983

    PubMed Central  PubMed  Google Scholar 

  • Moller M, Freund M et al (2005) Real time fMRI: a tool for the routine presurgical localisation of the motor cortex. Eur Radiol 15(2):292–295

    CAS  PubMed  Google Scholar 

  • Nensa F, Beiderwellen K et al (2014) Clinical applications of PET/MR: current status and future perspectives. Diagn Interv Radiol. doi:10.5152/dir.14008 [Epub ahead of print]

    PubMed  Google Scholar 

  • Nimsky C (2011) Intraoperative acquisition of fMRI and DTI. Neurosurg Clin N Am 22(2):269–277. doi:10.1016/j.nec.2010.11.005, ix

    PubMed  Google Scholar 

  • Niu C, Zhang M et al (2014) Motor network plasticity and low-frequency oscillations abnormalities in patients with brain gliomas: a functional MRI study. PLoS One 9(5):e96850. doi:10.1371/journal.pone.0096850, eCollection 2014

    PubMed Central  PubMed  Google Scholar 

  • O’Donell LJ, Rigolo L et al (2012) fMRI-DTI modeling via landmark distance atlases for prediction and detection of fiber tracts. Neuroimage 60(1):456–470. doi:10.1016/j.neuroimage.2011.11.014, Epub 2011 Dec 2

    Google Scholar 

  • Ogawa S, Lee TM et al (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87(24):9868–8972

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ogawa S, Tank DW et al (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89(13):5951–5955

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ogawa S, Menon RS et al (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64(3):803–812

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ojemann GA (1991) Cortical organization of language. J Neurosci 11(8):2281–2287

    CAS  PubMed  Google Scholar 

  • Ojemann G, Ojemann J et al (1989) Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg 71(3):316–326

    CAS  PubMed  Google Scholar 

  • Orringer DA, Golby A, Jolesz F (2012) Neuronavigation in the surgical management of brain tumors: current and future trends. Expert Rev Med Devices 9(5):491–500. doi:10.1586/erd.12.42

    PubMed Central  CAS  PubMed  Google Scholar 

  • Otten ML, Mikell CB et al (2012) Motor deficits correlate with resting state motor network connectivity in patients with brain tumours. Brain 135(Pt 4):1017–1026. doi:10.1093/brain/aws041, Epub 2012 Mar 8

    PubMed Central  PubMed  Google Scholar 

  • Partovi S, Jacobi B et al (2012) Clinical standardized fMRI reveals altered language lateralization in patients with brain tumor. AJNR Am J Neuroradiol 33(11):2151–2157. doi:10.3174/ajnr.A3137, Epub 2012 May 17

    CAS  PubMed  Google Scholar 

  • Penfield W (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443

    Google Scholar 

  • Penfield W (1950) The cerebral cortex of man. MacMillan, New York: 57 ff

    Google Scholar 

  • Pillai JJ (2010) The evolution of clinical functional imaging during the past 2 decades and its current impact on neurosurgical planning. AJNR Am J Neuroradiol 31(2):219–225. doi:10.3174/ajnr.A1845

    CAS  PubMed  Google Scholar 

  • Pittau F, Groullier F et al (2014) The role of functional neuroimaging in pre-surgical epilepsy evaluation. Front Neurol 5:31. doi:10.3389/fneur.2014.00031, eCollection 2014

    PubMed Central  PubMed  Google Scholar 

  • Posse S, Ackley E et al (2013) High-speed real-time resting-state FMRI using multi-slab echo-volumar imaging. Front Hum Neurosci 7:479. doi:10.3389/fnhum.2013.00479, eCollection 2013

    PubMed Central  PubMed  Google Scholar 

  • Potgieser AR, Wagemakers M et al (2014) The role of diffusion tensor imaging in brain tumor surgery: a review of the literature. Clin Neurol Neurosurg 124C:51–58. doi:10.1016/j.clineuro.2014.06.009 [Epub ahead of print]

    Google Scholar 

  • Purdon PL, Weisskoff RM (1998) Effect of temporal autocorrelation due to physiological noise and stimulus paradigm on voxel-level false-positive rates in fMRI. Hum Brain Mapp 6:239–249

    CAS  PubMed  Google Scholar 

  • Raichle ME (1983) Positron emission tomography. Annu Rev Neurosci 6:249–267

    CAS  PubMed  Google Scholar 

  • Rausch R, Silfvenious H et al (1993) Intra-arterial amobarbital procedures. In: Engel JJ (ed) Surgical treatment of the epilepsies. Raven Press, New York, pp 341–357

    Google Scholar 

  • Reinges MH, Nguyen HH et al (2004) Course of brain shift during microsurgical resection of supratentorial cerebral lesions: limits of conventional neuronavigation. Acta Neurochir (Wien) 146(4):369–377; discussion 377

    CAS  Google Scholar 

  • Risholm P, Golby AJ, Wells W 3rd (2011) Multimodal image registration for preoperative planning and image-guided neurosurgical procedures. Neurosurg Clin N Am 22(2):197–206, viii. doi:10.1016/j.nec.2010.12.001

    PubMed Central  PubMed  Google Scholar 

  • Roberts TP (2003). Functional magnetic resonance imaging (fMRI) processing and analysis. ASNR Electronic Learning Center Syllabus 1–23

    Google Scholar 

  • Rutten GJ, Ramsey NF et al (2002) Development of a functional magnetic resonance imaging protocol for intraoperative localization of critical temporoparietal language areas. Ann Neurol 51(3):350–360

    CAS  PubMed  Google Scholar 

  • Schreiber A, Hubbe U et al (2000) The influence of gliomas and nonglial space-occupying lesions on blood-oxygen-level-dependent contrast enhancement. AJNR Am J Neuroradiol 21(6):1055–1063

    CAS  PubMed  Google Scholar 

  • Shahar T, Rozovski U et al (2014) Preoperative imaging to predict intraoperative changes in tumor-to-corticospinal tract distance: an analysis of 45 cases using high-field intraoperative magnetic resonance imaging. Neurosurgery 75(1):23–30

    PubMed  Google Scholar 

  • Shinoura N, Yamada R et al (2005) Preoperative fMRI, tractography and continuous task during awake surgery for maintenance of motor function following surgical resection of metastatic tumor spread to the primary motor area. Minim Invasive Neurosurg 48(2):85–90

    CAS  PubMed  Google Scholar 

  • Smucny J, Wylie KP, Tregellas JR (2014) Functional magnetic resonance imaging of intrinsic brain networks for translational drug discovery. Trends Pharmacol Sci. doi:10.1016/j.tips.2014.05.001 [Epub ahead of print]

    PubMed  Google Scholar 

  • Stadlbauer A, Buchfelder M et al (2010) Fiber density mapping of gliomas: histopathologic evaluation of a diffusion-tensor imaging data processing method. Radiology 257(3):846–853. doi:10.1148/radiol.10100343, Epub 2010 Sep 30

    PubMed  Google Scholar 

  • Steger TR, Jackson EF (2004) Real-time motion detection of functional MRI data. J Appl Clin Med Phys 5(2):64–70

    PubMed  Google Scholar 

  • Sternberg EJ, Lipton ML, Burns J (2014) Utility of diffusion tensor imaging in evaluation of the peritumoral region in patients with primary and metastatic brain tumors. AJNR Am J Neuroradiol 35(3):439–444. doi:10.3174/ajnr.A3702, Epub 2013 Sep 19

    CAS  PubMed  Google Scholar 

  • Stippich C (2010) Presurgical functional magnetic resonance imaging. Radiologe 50(2):110–122

    CAS  PubMed  Google Scholar 

  • Stippich C, Hofmann R et al (1999) Somatotopic mapping of the human primary somatosensory cortex by fully automated tactile stimulation using functional magnetic resonance imaging. Neurosci Lett 277(1):25–28

    CAS  PubMed  Google Scholar 

  • Stippich C, Kapfer D et al (2000) Robust localization of the contralateral precentral gyrus in hemiparetic patients using the unimpaired ipsilateral hand: a clinical functional magnetic resonance imaging protocol. Neurosci Lett 285(2):155–159

    CAS  PubMed  Google Scholar 

  • Stippich C, Heiland S et al (2002a) Functional magnetic resonance imaging: physiological background, technical aspects and prerequisites for clinical use. Röfo 174(1):43–49

    CAS  PubMed  Google Scholar 

  • Stippich C, Ochmann H, Sartor K (2002b) Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging. Neurosci Lett 331(1):50–54

    CAS  PubMed  Google Scholar 

  • Stippich C, Kress B et al (2003a) Preoperative functional magnetic resonance tomography (FMRI) in patients with rolandic brain tumors: indication, investigation strategy, possibilities and limitations of clinical application. Röfo 175(8):1042–1050

    CAS  PubMed  Google Scholar 

  • Stippich C, Mohammed J et al (2003b) Robust localization and lateralization of human language function: an optimized clinical functional magnetic resonance imaging protocol. Neurosci Lett 346(1–2):109–113

    CAS  PubMed  Google Scholar 

  • Stippich C, Romanowski A et al (2004) Fully automated localization of the human primary somatosensory cortex in one minute by functional magnetic resonance imaging. Neurosci Lett 364(2):90–93

    CAS  PubMed  Google Scholar 

  • Stippich C, Romanowski A et al (2005) Time-efficient localization of the human secondary somatosensory cortex by functional magnetic resonance imaging. Neurosci Lett 381(3):264–268

    CAS  PubMed  Google Scholar 

  • Stippich C, Rapps N et al (2007) Localizing and lateralizing language in patients with brain tumors: feasibility of routine preoperative functional MR imaging in 81 consecutive patients. Radiology 243(3):828–36.

    Google Scholar 

  • Sunaert S, Yousry TA (2001) Clinical applications of functional magnetic resonance imaging. Neuroimaging Clin N Am 11(2):221–236, viii

    CAS  PubMed  Google Scholar 

  • Svolos P, Tsolaki E et al (2013) Investigating brain tumor differentiation with diffusion and perfusion metrics at 3T MRI using pattern recognition techniques. Magn Reson Imaging 31(9):1567–1577

    PubMed  Google Scholar 

  • Thulborn KR (1998) A BOLD move for fMRI. Nat Med 4(2):155–156

    CAS  PubMed  Google Scholar 

  • Thulborn KR (1999) Clinical rationale for very-high-field (3.0 Tesla) functional magnetic resonance imaging. Top Magn Reson Imaging 10(1):37–50

    CAS  PubMed  Google Scholar 

  • Thulborn K (2006) Clinical functional magnetic resonance imaging. In: Haacke EM (ed) Current protocols in magnetic resonance imaging. Wiley, New York

    Google Scholar 

  • Thulborn KR, Davis D et al (1996) Clinical fMRI: implementation and experience. Neuroimage 4(3 Pt 3):S101–S107

    CAS  PubMed  Google Scholar 

  • Towle VL, Khorasani L et al (2003) Noninvasive identification of human central sulcus: a comparison of gyral morphology, functional MRI, dipole localization, and direct cortical mapping. Neuroimage 19(3):684–697

    PubMed  Google Scholar 

  • Tozakidou M, Wenz H et al (2013) Primary motor cortex activation and lateralization in patients with tumors of the central region. Neuroimage Clin 2:221–228. doi:10.1016/j.nicl.2013.01.002, eCollection 2013

    PubMed Central  PubMed  Google Scholar 

  • Tsougos I, Svolos P et al (2012) Differentiation of glioblastoma multiforme from metastatic brain tumor using proton magnetic resonance spectroscopy, diffusion and perfusion metrics at 3 T. Cancer Imaging 12:423–436. doi:10.1102/1470-7330.2012.0038

    PubMed Central  PubMed  Google Scholar 

  • Turner R, Le Bihan D et al (1991) Echo-planar time course MRI of cat brain oxygenation changes. Magn Reson Med 22(1):159–166

    CAS  PubMed  Google Scholar 

  • Uematsu S, Lesser R et al (1992) Motor and sensory cortex in humans: topography studied with chronic subdural stimulation. Neurosurgery 31(1):59–71; discussion 71–72

    CAS  PubMed  Google Scholar 

  • Ulmer JL, Hacein-Bey L et al (2004a) Lesion-induced pseudodominance at functional magnetic resonance imaging: implications for preoperative assessments. Neurosurgery 55(3):569–579; discussion 580–581

    PubMed  Google Scholar 

  • Ulmer JL, Salvan CV et al (2004b) The role of diffusion tensor imaging in establishing the proximity of tumor borders to functional brain systems: implications for preoperative risk assessments and postoperative outcomes. Technol Cancer Res Treat 3(6):567–576

    PubMed  Google Scholar 

  • Van Westen D, Skagerberg G et al (2005) Functional magnetic resonance imaging at 3T as a clinical tool in patients with intracranial tumors. Acta Radiol 46(6):599–609

    PubMed  Google Scholar 

  • Wada J, Rasmussen T (1960) Intracarotid injection of sodium amytal for the lateralization of cerebral speech dominance. Experimental and clinical observations. J Neurosurg 17:266–282

    Google Scholar 

  • Wehner T (2013) The role of functional imaging in the tumor patient. Epilepsia 54(Suppl 9):44–49. doi:10.1111/epi.12443

    PubMed  Google Scholar 

  • Weiskopf N, Veit R et al (2003) Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage 19(3):577–586

    PubMed  Google Scholar 

  • Wittek A, Kikinis R et al (2005) Brain shift computation using a fully nonlinear biomechanical model. Med Image Comput Comput Assist Interv 8(Pt 2):583–590

    PubMed  Google Scholar 

  • Woolsey CN, Erickson TC, Gilson WE (1979) Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation. J Neurosurg 51(4):476–506

    CAS  PubMed  Google Scholar 

  • Yousry TA, Schmid UD et al (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120(Pt 1):141–157

    PubMed  Google Scholar 

  • Zacharaki EI, Morita N et al (2012) Survival analysis of patients with high-grade gliomas based on data mining of imaging variables. AJNR Am J Neuroradiol 33(6):1065–1071. doi:10.3174/ajnr.A2939, Epub 2012 Feb 9

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zambreanu L, Wise RG et al (2005) A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging. Pain 114(3):397–407

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Stippich MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stippich, C. (2015). Presurgical Functional MRI and Diffusion Tensor Imaging. In: Stippich, C. (eds) Clinical Functional MRI. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45123-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45123-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45122-9

  • Online ISBN: 978-3-662-45123-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics