Skip to main content

Polycrystalline Diamond (PCD) Tool Material: Emerging Applications, Problems, and Possible Solutions

  • Chapter
  • First Online:
Traditional Machining Processes

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

Abstract

This chapter first discusses the challenges with the tool material selection for machining of high-silicon aluminum-matrix composites. It is shown that the combination of a soft easy-to-adhere Al-matrix and highly abrasive particles limits the use of cemented carbide tools due to high rate of adhesion and abrasion wear. The issue becomes intolerable in high-speed machining applications. As a result, polycrystalline diamond (PCD) is slowly becoming a material of choice for such applications. The chapter presents the major research advances in PCD as a tool material. The wear mechanism of PCD is discussed at macro- and micro levels. A discussion on the need and a report on the progress in the development of thermal stable grades of PCD conclude the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shin YC, Dandekar C (2012) Mechanics and modeling of chip formation in machining of MMC. In: Davim JP (ed) Machining of metal matrix composits. Springer, London, pp 1–50

    Google Scholar 

  2. Hung NP, Boey FYC, Khor KA, Phua YS, Lee HF (1996) Machinability of aluminum alloys reinforced with silicon carbide particulates. J Mater Process Technol 56(1–4):966–977

    Article  Google Scholar 

  3. Andrewesa CJE, Feng H-Y, Laub WM (2000) Machining of an aluminum/SiC composite using diamond inserts. J Mater Process Technol 102(1–3):25–29

    Article  Google Scholar 

  4. El-Gallab M, Sklad M (1998) Machining of Al/SiC particulate metal matrix composites. Part I. Tool performance. J Mater Process Technol 83(2):151–158

    Article  Google Scholar 

  5. Tomac N, Tonnessen K (1992) Machinability of particulate aluminum matrix composites. CIRP Ann Manuf Technol 41:55–58

    Article  Google Scholar 

  6. Astakhov VP (2006) Tribology of metal cutting. Elsevier, London

    Google Scholar 

  7. Zorev NN (1966) Metal cutting mechanics. Pergamon Press, Oxford

    Google Scholar 

  8. Astakhov VP (1998/1999) Metal cutting mechanics. CRC Press, Boca Raton

    Google Scholar 

  9. Hannay JB (1879) On the artificial formation of the diamond. Proc R Soc Lond 30(200–205):450–461

    Article  Google Scholar 

  10. Royère C (1999) The electric furnace of Henri Moissan at one hundred years: connection with the electric furnace, the solar furnace, the plasma furnace? Ann Pharm Fr 57(2):116–130

    Google Scholar 

  11. Moissan H (1994) Nouvelles expériences sur la reproduction du diamant. C R Acad Sci Paris 118:320–341

    Google Scholar 

  12. Davis RF, Films Diamond (1993) Diamond films and coating. Noyes Publications, Park Ridge

    Google Scholar 

  13. Uehara K, Yamaya S (1988) High pressure sintering of diamond by cobalt infiltration. Int J Refract Met H 7(4):219–223

    Google Scholar 

  14. Astakhov VP, Davim PJ (2008) Tools (geometry and material) and tool wear. In: Davim PJ (ed) Machining: fundamentals and recent advances. Springer, London, pp 29–58

    Google Scholar 

  15. Shaw MC (2004) Metal cutting principles, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  16. Trent EM, Wright PK (2000) Metal cutting, 4th edn. Butterworth-Heineman, Woburn

    Google Scholar 

  17. Astakhov VP (2010) Geometry of single-point turning tools and drills. Fundamentals and practical applications. Springer, London

    Book  Google Scholar 

  18. Stenphenson DA, Agapiou JS (1996) Metal cutting theory and practice. Marcel Dekker, New York

    Google Scholar 

  19. El-Gallab M, Sklad M (2000) Machining of Al/SiC particulate metal matrix composites. Part III. Comprehensive tool wear models. J Mater Process Technol 101:10–20

    Google Scholar 

  20. Komarovsky AA, Astakhov VP (2002) Physics of strength and fracture control: fundamentals of the adaptation of engineering materials and structures. CRC Press, Boca Raton

    Book  Google Scholar 

  21. Miklaszewski S, Zurek M, Beer P, Sokolowska A (2000) Micromechanism of polycrystalline cemented diamond tool wear during milling of wood-based materials. Diam Relat Mater 9(3–6):1125–1128

    Article  Google Scholar 

  22. Bai QS, Yao YX, Bex P, Zhang D (2004) Study on wear mechanisms and grain effects of PCD tool in machining laminated flooring. Int J Refract Met Hard Mater 2–3:111–115

    Article  Google Scholar 

  23. Philbin P, Gordon S (2005) Characterisation of the wear behaviour of polycrystalline diamond (PCD) tools when machining wood-based composites. J Mater Process Technol 162–163:665–672

    Article  Google Scholar 

  24. Ortiz M, Suresh S (1993) Statistical properties of residual stresses and inter-granular fracture in ceramic materials. J Appl Mech 60:77–84

    Article  Google Scholar 

  25. Evans AG (1978) Microfracture from thermal expansion anisotropy–I. Acta Metall 26:1845–1853

    Article  Google Scholar 

  26. Evans AG, Fu Y (1985) Some effects of microcracks on the mechanical properties of brittle solids—II. Microcrack toughening. Acta Metall 33(8):1525–1531

    Article  Google Scholar 

  27. Laws N, Lee JC (1989) Microcracking in polycrystalline ceramics: elastic isotropy and thermal anisotropy. J Mech Phys Solids 37(5):603–618

    Article  MATH  Google Scholar 

  28. Yousef SG, Rodel J, Fuller ER Jr, Zimmermannz A, El-Dasher BS (2005) Microcrack evolution in alumina ceramics: experiment and simulation. Am Ceram Soc 88(10):2809–2816

    Article  Google Scholar 

  29. Kim BN, Naitoh H, Wakayama S, Kawahara M (1996) Simulation of microfracture process and fracture strength in 2-dimensional polycrystallinematerials. JSME Int J 39(4):548–554

    Google Scholar 

  30. Kim BN, Wakayama S (1997) Simulation of microfracture process of brittle polycrystals: microcracking and crack propagation. Comput Mater Sci 8:327–334

    Article  Google Scholar 

  31. Yurgartis SW, MacGibbon BS, Mulvaney P (1992) Quantification of microcracking in brittle-matrix composites. J Mater Sci 27:6679–6686

    Article  Google Scholar 

  32. Crimp MA (2006) Scanning electron microscope imaging of dislocations in bulk materials, using electron channeling contrast. Microsc Res Tech 69:374–381

    Article  Google Scholar 

  33. White SR, Sottos NR, Moore J, Geubelle P, Kessler M, Brown E, Suresh S, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797

    Article  Google Scholar 

  34. Gill SS, Singh R, Singh H, Singh J (2009) Wear behavior of cryogenically treated tungsten carbide inserts under dry and wet turning conditions. Int J Mach Tools Manuf 49:256–260

    Article  Google Scholar 

  35. Zolotorevsky VS, Belov NA, Glazoff MV (2007) Casting aluminum alloys. Elsevier, Oxford

    Google Scholar 

  36. Chen Y-J (2009) Relationship between ultrasonic characteristics and relative porosity in Al and Al-XSi alloys. Mater Trans 50(9):2308–2313

    Article  Google Scholar 

  37. Cook MW, Bossom PK (2000) Trends and recent developments in the material manufacture and cutting tool application of polycrystalline diamond and polycrystalline cubic boron nitride. Int J Refract Metal Hard Mater 18:147–152

    Article  Google Scholar 

  38. Coelho RT, Yamada S, Aspinwall DK, Wise MLH (1995) The application of polycrystalline diamond tool materials when drilling and reaming aluminium based alloys including MMC. Int J Mach Tool Manuf 35:761–774

    Article  Google Scholar 

  39. Fedoseev DV, Vnukov SP, Bukhovets VL, Anikin BA (1986) Surface graphitization of diamond at high temperatures. Surf Coat Technol 28:207–214

    Article  Google Scholar 

  40. Shimada S, Tanaka H, Higuchi M, Yamaguchi T, Honda S, Obata K (2004) Thermo-chemical wear mechanism of diamond tool in machining of ferrous metals. CIRP Ann Manuf Technol 53:57–60

    Article  Google Scholar 

  41. Miess D, Rai G (1996) Fracture toughness and thermal resistance of polycrystalline diamond compacts. Mater Sci Eng A 209:270–276

    Article  Google Scholar 

  42. Vandenbulcke L, De Barros MI (2001) Deposition, structure, mechanical properties and tribological behavior of polycrystalline to smooth fine-grained diamond coatings. Surf Coat Technol 146–147:417–424

    Google Scholar 

  43. Chen Y, Zhang LC, Arsecularatne JA (2007) Polishing of polycrystalline diamond by the technique of dynamic friction. Part 2: material removal mechanism. Int J Mach Tool Manuf 47:1615–1624

    Article  Google Scholar 

  44. Osipov AS, Bondarenko NA, Petrusha IA, Mechnik VA (2010) Drill bits with thermostable PCD inserts. Diam Tooling J 3:31–34

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor P. Astakhov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Astakhov, V.P., Stanley, A. (2015). Polycrystalline Diamond (PCD) Tool Material: Emerging Applications, Problems, and Possible Solutions. In: Davim, J. (eds) Traditional Machining Processes. Materials Forming, Machining and Tribology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45088-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45088-8_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45087-1

  • Online ISBN: 978-3-662-45088-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics