Skip to main content

Stable Junction Polymer Light-Emitting Electrochemical Cells

  • Chapter
  • First Online:
Organic Nanophotonics

Part of the book series: Nano-Optics and Nanophotonics ((NON))

  • 1271 Accesses

Abstract

Polymer light-emitting electrochemical cells (PLECs) employ a thin layer of a luminescent conjugated polymer admixed with an ionic source and an ionic conductor for the in situ formation of a p-i-n junction to facilitate the injections of both electrons and holes. The junction formation enables the use of an air-stable conductor as the cathode and a relatively thick emissive polymer layer which is more compatible with low-cost, scalable coating processes. This chapter overviews the operation mechanism, as well as the recent progress in employing crosslinkable ionic conductors to stabilize the p-i-n junction in PLECs. The static junction results in electroluminescence at high brightness, high efficiency, and prolonged lifetime. Solution-processable and printable electrode materials, such as silver nanowire, carbon nanotube, graphene, and conducting polymer, can be used in PLECs, thus opening a way to fully printable and stretchable displays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Gu, Z.L. Shen, P.E. Burrows, S.R. Forrest, Transparent flexible organic light-emitting devices. Adv. Mater. 9, 725–728 (1997)

    Article  Google Scholar 

  2. G. Gustafsson, Y. Cao, G.M. Treacy, F. Klavetter, N. Colaneri, A.J. Heeger, Flexible light-emitting-diodes made from soluble conducting polymers. Nature 357, 477–479 (1992)

    Article  Google Scholar 

  3. Z. Yu, L. Hu, Z. Liu, M. Sun, M. Wang, G. Gruner, Q. Pei, Fully bendable polymer light emitting devices with carbon nanotubes as cathode and anode. Appl. Phys. Lett. 95, 203–304 (2009)

    Google Scholar 

  4. Q. Pei, G. Yu, C. Zhang, Y. Yang, A.J. Heeger, Polymer light-emitting electrochemical-cells. Science 269, 1086–1088 (1995)

    Article  Google Scholar 

  5. http://www.add-vision.com/

  6. Q. Sun, Y. Li, Q. Pei, Polymer light-emitting electrochemical cells for high-efficiency low-voltage electroluminescent devices. J Display Tech 3, 211–224 (2007)

    Article  Google Scholar 

  7. Q. Pei, A.J. Hegger, Operating mechanism of light-emitting electrochemical cells. Nat. Mater. 7, 167–167 (2008)

    Article  Google Scholar 

  8. Q. Pei, Y. Yang, G. Yu, C. Zhang, A.J. Heeger, Polymer light-emitting electrochemical cells: in situ formation of a light-emitting p-n junction. J. Am. Chem. Soc. 118, 3922–3929 (1996)

    Article  Google Scholar 

  9. Q. Pei, Y. Yang, G. Yu, Y. Cao, A.J. Heeger, Solid state polymer light-emitting electrochemical cells: recent developments. Synth. Met. 85, 1229–1232 (1997)

    Article  Google Scholar 

  10. D.J. Dick, A.J. Heeger, Y. Yang, Q. Pei, Imaging the structure of the p-n junction in polymer light-emitting electrochemical cells. Adv. Mater. 8, 985–987 (1996)

    Article  Google Scholar 

  11. J. Gao, J. Dane, Imaging the doping and electroluminescence in extremely large planar polymer light-emitting electrochemical cells. J. Appl. Phys. 98, 063513 (2005)

    Article  Google Scholar 

  12. P. Matyba, K. Maturova, M. Kemerink, N.D. Robinson, L. Edman, The dynamic organic p-n junction. Nat. Mater. 8, 672–676 (2009)

    Article  Google Scholar 

  13. N.E. Tokel, A.J. Bard, Electrogenerated Chemiluminescence. IX. Electrochemistry and emission from systems containing Tris(2,2’-bipyridine)ruthenium(II) dichloride. J. Am. Chem. Soc. 94, 2862–2863 (1972)

    Article  Google Scholar 

  14. T. Hu, L. He, L. Duan, Y. Qiu, Solid-state light-emitting electrochemical cells based on ionic iridium(III) complexes. J. Mater. Chem. 22, 4206–4215 (2012)

    Article  Google Scholar 

  15. J. Slinker, D. Bernards, P.L. Houston, H.D. Abruna, S. Bernhard, G.G. Malliaras, Solid-state electroluminescent devices based on transition metal complexes. Chem. Commun. 19, 2392–2399 (2003)

    Google Scholar 

  16. S. Bernhard, X. Gao, G.G. Malliaras, H.D. Abruna, Efficient electroluminescent devices based on a chelated osmium(II) complex. Adv. Mater. 14, 433–436 (2002)

    Article  Google Scholar 

  17. Q. Zhang, Q. Zhou, Y. Cheng, L. Wang, D. Ma, X. Jing, F. Wang, Highly efficient electroluminescence from green-light-emitting electrochemical cells based on Cu-I complexes. Adv. Funct. Mater. 16, 1203–1208 (2006)

    Article  Google Scholar 

  18. Y. Cao, Q. Pei, M.R. Andersson, G. Yu, A.J. Heeger, Light-emitting electrochemical cells with crown ether as solid electrolyte. J. Electrochem. Soc. 144, L317–L320 (1997)

    Article  Google Scholar 

  19. L. Collie, D. Parker, C. Tachon, H.V.S. Hubbard, G.R. Davies, I.M. Ward, S.C. Wellings, Synthesis and lithium transport in ionically conducting crown-ether polymers. Polymer 34, 1541–1543 (1993)

    Article  Google Scholar 

  20. S. Panozzo, M. Armand, O. Stephan, Light-emitting electrochemical cells using a molten delocalized salt. Appl. Phys. Lett. 80, 679–681 (2002)

    Article  Google Scholar 

  21. T. Ouisse, T.M. Armand, Y. Kervella, O. Stephan, Fully transparent, organic light-emitting electrochemical cells. Appl. Phys. Lett. 81, 3131–3133 (2002)

    Article  Google Scholar 

  22. T. Ouisse, O. Stephan, M. Armand, J.C. Lepretre, Double-layer formation in organic light-emitting electrochemical cells. J. Appl. Phys. 92, 2795–2802 (2002)

    Article  Google Scholar 

  23. C. Yang, Q. Sun, J. Qiao, Y. Li, Ionic liquid doped polymer light-emitting electrochemical cells. J Phys Chem B 107, 12981–12988 (2003)

    Article  Google Scholar 

  24. J.M. Leger, D.B. Rodovsky, G.P. Bartholomew, Self-assembled, chemically fixed homojunctions in semiconducting polymers. Adv. Mater. 18, 3130–3134 (2006)

    Article  Google Scholar 

  25. J.M. Leger, D.G. Patel, D.B. Rodovsky, G.P. Bartholomew, Polymer photovoltaic devices employing a chemically fixed p-i-n junction. Adv. Funct. Mater. 18, 1212–1219 (2008)

    Article  Google Scholar 

  26. I. Kosilkin, M. Martens, M. Murphy, J. Leger, Polymerizable ionic liquids for fixed-junction polymer light-emitting electrochemical cells. Chem. Mater. 22, 4838–4840 (2010)

    Article  Google Scholar 

  27. G. Yu, Y. Cao, M. Andersson, J. Gao, A.J. Heeger, Polymer light-emitting electrochemical cells with frozen p-i-n junction at room temperature. Adv. Mater. 10, 385–388 (1998)

    Article  Google Scholar 

  28. Z. Yu, M. Sun, Q. Pei, Electrochemical formation of stable p-i-n junction in conjugated polymer thin films. J Phys Chem B 113, 8481–8486 (2009)

    Article  Google Scholar 

  29. Z. Yu, M. Wang, G. Lei, J. Liu, L. Li, Q. Pei, Stabilizing the dynamic p-i-n junction in polymer light emitting electrochemical cells. J Phys Chem Lett 2, 367–372 (2011)

    Article  Google Scholar 

  30. S. Tang, K. Irgum, L. Edman, Chemical stabilization of doping in conjugated polymers. Org. Electron. 11, 1079–1087 (2010)

    Article  Google Scholar 

  31. H. Spreitzer, H. Becker, E. Kluge, W. Kreuder, H. Schenk, R. Demandt, H. Schoo, Soluble phenyl-substituted PPVs—New materials for highly efficient polymer LEDs. Adv. Mater. 10, 1340–1343 (1998)

    Article  Google Scholar 

  32. A. Sandström, P. Matyba, L. Edman, Yellow-green light-emitting electrochemical cells with long lifetime and high efficiency. Appl. Phys. Lett. 96, 053303 (2010)

    Article  Google Scholar 

  33. K. Walzer, B. Maennig, M. Pfeiffer, K. Leo, Highly efficient organic devices based on electrically doped transport layers. Chem. Rev. 107, 1233–1271 (2007)

    Article  Google Scholar 

  34. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, K. Leo, White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234–238 (2009)

    Article  Google Scholar 

  35. J. Liu, L.N. Lewis, T.J. Faircloth, A.R. Duggal, High performance organic light-emitting diodes fabricated via a vacuum-free lamination process. Appl. Phys. Lett. 88, 223509 (2006)

    Article  Google Scholar 

  36. F. Huang, H. Wu, D. Wang, W. Yang, Y. Cao, Novel electroluminescent conjugated polyelectrolytes based on polyfluorene. Chem. Mater. 16, 708–716 (2004)

    Article  Google Scholar 

  37. H. Wu, F. Huang, Y. Mo, W. Yang, D. Wang, J. Peng, Y. Cao, Efficient electron injection from a bilayer cathode consisting of aluminum and alcohol-/water-soluble conjugated polymers. Adv. Mater. 16, 1826–1930 (2004)

    Article  Google Scholar 

  38. W. Zeng, H. Wu, C. Zhang, F. Huang, J. Peng, W. Yang, Y. Cao, Polymer light-emitting diodes with cathodes printed from conducting Ag paste. Adv. Mater. 19, 810–814 (2007)

    Article  Google Scholar 

  39. T. Lee, J. Zaumseil, Z. Bao, J. Hsu, J.A. Rogers, Organic light-emitting diodes formed by soft contact lamination. PNAS 101, 429–433 (2004)

    Article  Google Scholar 

  40. J. Fang, P. Matyba, L. Edman, The design and realization of flexible, long-lived light-emitting electrochemical cells. Adv. Funct. Mater. 19, 2671–2676 (2009)

    Article  Google Scholar 

  41. S. Graber, K. Doyle, M. Neuburger, C.E. Housecroft, E.C. Constable, R.D. Costa, E. Orti, D. Repetto, H.J. Bolink, A supramolecularly-caged ionic iridium (III) complex yielding bright and very stable solid-state light-emitting electrochemical cells. J. Am. Chem. Soc. 130, 14944–14945 (2008)

    Article  Google Scholar 

  42. Y. Shao, G.C. Bazan, A.J. Heeger, Long-lifetime polymer light-emitting electrochemical cells. Adv. Mater. 19, 365–370 (2007)

    Article  Google Scholar 

  43. D.R. Cairns, R.P. Witte, D.K. Sparacin, S.M. Sachsman, D.C. Paine, G.P. Crawford, R.R. Newton, Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates. Appl. Phys. Lett. 76, 1425–1427 (2000)

    Article  Google Scholar 

  44. V.C. Moore, M.S. Strano, E.H. Haroz, R.H. Hauge, R.E. Smalley, J. Schmidt, Y. Talmon, Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3, 1379–1382 (2003)

    Article  Google Scholar 

  45. Z.C. Wu, Z.H. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, A.F. Hebard, A.G. Rinzler, Transparent, conductive carbon nanotube films. Science 305, 1273–1276 (2004)

    Article  Google Scholar 

  46. M. Kaempgen, G.S. Duesberg, S. Roth, Transparent carbon nanotube coatings. Appl. Surf. Sci. 252, 425–429 (2005)

    Article  Google Scholar 

  47. L. Hu, W. Yuan, P. Brochu, G. Gruner, Q. Pei, Highly stretchable, conductive, and transparent nanotube thin films. Appl. Phys. Lett. 94, 161108 (2009)

    Article  Google Scholar 

  48. W. Yuan, L. Hu, Z. Yu, T. Lam, J. Biggs, S. Ha, D. Xi, B. Chen, M.K. Senesky, G. Gruner, Q. Pei, Fault-tolerant dielectric elastomer actuators using single-walled carbon nanotube electrodes. Adv. Mater. 20, 621–625 (2008)

    Article  Google Scholar 

  49. K. Lee, Z. Wu, Z. Chen, F. Ren, S.J. Pearton, A.G. Rinzler, Single wall carbon nanotubes for p-type ohmic contacts to GaN light-emitting diodes. Nano Lett. 4, 911–914 (2004)

    Article  Google Scholar 

  50. C.M. Aguirre, S. Auvray, S. Pigeon, R. Izquierdo, P. Desjardins, R. Martel, Carbon nanotube sheets as electrodes in organic light-emitting diodes. Appl. Phys. Lett. 88, 183104 (2006)

    Article  Google Scholar 

  51. D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M.E. Tompson, C.W. Zhou, Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett. 6, 1880–1886 (2006)

    Article  Google Scholar 

  52. J. Li, L. Hu, L. Wang, Y. Zhou, G. Gruner, T.J. Marks, Organic light-emitting diodes having carbon nanotube anodes. Nano Lett. 6, 2472–2477 (2006)

    Article  Google Scholar 

  53. A.D. Pasquier, H.E. Unalan, A. Kanwal, S. Miller, M. Chhowalla, Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Appl. Phys. Lett. 87, 203511 (2005)

    Article  Google Scholar 

  54. M.W. Rowell, M.A. Topinka, M.D. McGehee, H.J. Prall, G. Dennler, N.S. Sariciftci, L. Hu, G. Gruner, Organic solar cells with carbon nanotube network electrodes. Appl. Phys. Lett. 88, 233506 (2006)

    Article  Google Scholar 

  55. C. Yu, C. Masarapu, J. Rong, B. Wei, H. Jiang, Stretchable supercapacitors based on buckled single-walled carbon nanotube macrofilms. Adv. Mater. 21, 4793–4797 (2009)

    Article  Google Scholar 

  56. Z. Yu, Z. Liu, M. Wang, M. Sun, G. Lei, Q. Pei, Highly flexible polymer light-emitting devices using carbon nanotubes as both anodes and cathodes. J Photon Energy 1, 011003 (2011)

    Article  Google Scholar 

  57. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  58. A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009)

    Article  Google Scholar 

  59. S. Stankovich, D.A. Dikin, R.D. Piner, K.M. Kohlhaas, A. Kleinhammes, Y. Jia et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)

    Article  Google Scholar 

  60. P. Matyba, H. Yamaguchi, G. Eda, M. Chhowalla, L. Edman, N.D. Robinson, Graphene and Mobile Ions: the key to all-plastic solution-processed light-emitting devices. ACS Nano 4, 637–642 (2010)

    Article  Google Scholar 

  61. S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland, J.N. Coleman, Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 3, 1767–1774 (2009)

    Article  Google Scholar 

  62. H. Wu, L. Hu, M.W. Rowell, D. Kong, J.J. Cha, J.R. McDonough, J. Zhu, Y. Yang, M.D. McGehee, Y. Cui, Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Lett. 10, 4242–4248 (2010)

    Article  Google Scholar 

  63. Z. Yu, L. Li, Q. Zhang, W. Hu, Q. Pei, Silver nanowire-polymer composite electrodes for efficient polymer solar cells. Adv. Mater. 23, 4453–4457 (2011)

    Article  Google Scholar 

  64. Z. Yu, Q. Zhang, L. Li, Q. Chen, X. Niu, J. Liu, Q. Pei, Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv. Mater. 23, 664–668 (2011)

    Article  Google Scholar 

  65. L. Li, Z. Yu, W. Hu, C.-H. Chang, Q. Chen, Q. Pei, Efficient flexible phosphorescent polymer light-emitting diodes based on silver nanowire-polymer composite electrode. Adv. Mater. 23, 5563–5567 (2011)

    Article  Google Scholar 

  66. J. Liang, L. Li, X. Niu, Z. Yu, Q. Pei, Fully solution-based fabrication of flexible light-emitting device at ambient conditions. J. Phys. Chem. C 117, 16632–16639 (2013)

    Article  Google Scholar 

  67. H.L. Filiatrault, G.C. Porteous, R.S. Carmichael, G.J.E. Davidson, T.B. Carmichael, Stretchable light-emitting electrochemical cells using an elastomeric emissive material. Adv. Mater. 24, 2673–2678 (2012)

    Article  Google Scholar 

  68. T. Someya, Flexible electronics: tiny lamps to illuminate the body. Nature Mater. 9, 879–880 (2010)

    Article  Google Scholar 

  69. R. Sprengard et al., OLED devices for signage applications: a review of recent advances and remaining challenges. Proc. SPIE 5519, 173–183 (2004)

    Article  Google Scholar 

  70. J. Viventi et al. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci. Transl. Med. 2, 24ra22 (2010)

    Google Scholar 

  71. M. Vosgueritchian, J.B.H. Tok, Z. Bao, Stretchable LEDs: light-emitting electronic skin. Nat. Photonics 7, 769 (2013)

    Article  Google Scholar 

  72. R.H. Kim et al., Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett. 11, 3881–3886 (2011)

    Article  Google Scholar 

  73. R.H. Kim et al., Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nature Mater. 9, 929–937 (2010)

    Article  Google Scholar 

  74. S.I. Park et al., Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325, 977–981 (2009)

    Article  Google Scholar 

  75. T. Sekitani et al., Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nature Mater. 8, 494–499 (2009)

    Article  Google Scholar 

  76. G.S. Jeong et al., Solderable and electroplatable flexible electronic circuit on a porous stretchable elastomer. Nat. Commun. 3, 997 (2012)

    Article  Google Scholar 

  77. K. Liu, Y. Sun, P. Liu, X. Lin, S. Fan, K. Jiang, Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors. Adv. Funct. Mater. 21, 2721–2728 (2011)

    Article  Google Scholar 

  78. T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, T. Someya, A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008)

    Article  Google Scholar 

  79. M.K. Shin, J. Oh, M. Lima, M.E. Kozlov, S.J. Kim, R.H. Baughman, Elastomeric conductive composites based on carbon nanotube forests. Adv. Mater. 22, 2663–2667 (2010)

    Article  Google Scholar 

  80. Z. Yu, X. Niu, Z. Liu, Q. Pei, Intrinsically stretchable polymer light emitting devices using carbon nanotube-polymer composite electrodes. Adv. Mater. 23, 3989–3994 (2011)

    Article  Google Scholar 

  81. J. Liang, L. Li, K. Tong, Z. Ren, W. Hu, X. Niu, Y. Chen, Q. Pei, Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 8(2), 1590–1600 (2014)

    Article  Google Scholar 

  82. W. Hu, X. Niu, R. Zhao, Q. Pei, Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane. Appl. Phys. Lett. 102, 083303 (2013)

    Article  Google Scholar 

  83. W. Hu, X. Niu, L. Li, S. Yun, Z. Yu, Q. Pei, Intrinsically stretchable transparent electrodes based on silver-nanowire–crosslinked-polyacrylate composites. Nanotechnology 23, 344002 (2012)

    Article  Google Scholar 

  84. S. Yun, X. Niu, Z. Yu, W. Hu, P. Brochu, Q. Pei, Compliant silver nanowire-polymer composite electrodes for bistable large strain actuation. Adv. Mater. 24, 1321–1327 (2012)

    Article  Google Scholar 

  85. J. Liang, L. Li, X. Niu, Z. Yu, Q. Pei, Elastomeric polymer light-emitting devices and displays. Nat. Photonics 7, 817–824 (2013)

    Article  Google Scholar 

  86. G.E. Pike, C.H. Seager, Percolation and conductivity: a computer study. I. Phys. Rev. B 10, 1421–1434 (1974)

    Article  Google Scholar 

  87. P. Lee et al., Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 24, 3326–3332 (2012)

    Article  Google Scholar 

  88. T. Xiong, F.X. Wang, X.F. Qiao, D.G. Ma, A soluble nonionic surfactant as electron injection material for high-efficiency inverted bottom-emission organic light emitting diodes. Appl. Phys. Lett. 93, 123310 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial supports by the Air Force Office of Scientific Research (FA9550-12-1-0074) and National Science Foundation (ECCS-1028412).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qibing Pei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liang, J., Yu, Z., Li, L., Gao, H., Pei, Q. (2015). Stable Junction Polymer Light-Emitting Electrochemical Cells. In: Zhao, Y. (eds) Organic Nanophotonics. Nano-Optics and Nanophotonics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45082-6_4

Download citation

Publish with us

Policies and ethics