Skip to main content

A Population-P-Systems-Inspired Membrane Algorithm for Multi-objective Optimization

  • Conference paper
Bio-Inspired Computing - Theories and Applications

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 472))

Abstract

This paper proposes a Population-P-Systems-inspired Membrane Algorithm (PPSMA) for multi-objective optimization. In the algorithm, the cells of population P systems are divided into two groups to implement different functions and the communications among cells are performed at two levels in order to obtain well converged and distributed solution set. Moreover, differential evolution is employed as search operator in PPSMA. Twelve multi-objective benchmark problems are utilized to test algorithm performance. Experimental results show that PPSMA performs better than five compared algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nishida, T.Y.: An Approximate Algorithm for NP-complete Optimization Problems Exploiting P Systems. In: BWMC, pp. 185–192 (2004)

    Google Scholar 

  2. Zhang, G., Gheorghe, M., Wu, C.Z.: A Quantum-Inspired Evolutionary Algorithm based on P Systems for Knapsack Problem. Fund. Inform. 87, 93–116 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Liu, C., Zhang, G., Liu, H., Gheorghe, M., Ipate, F.: An Improved Membrane Algorithm for Solving Time-Frequency Atom Decomposition. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 371–384. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Zhang, G., Cheng, J., Gheorghe, M., Meng, Q.: A Hybrid Approach based on Differential Evolution and Tissue Membrane Systems for Solving Constrained Manufacturing Parameter Optimization Problems. Appl. Soft Comput. 13, 1528–1542 (2013)

    Article  Google Scholar 

  5. Zhang, G., Rong, H., Cheng, J., Qin, Y.: A Population-Membrane-System-Inspired Evolutionary Algorithm for Distribution Network Reconfiguration. Chinese J. Electron. 23, 437–441

    Google Scholar 

  6. Zhang, G., Gheorghe, M., Pan, L., Pérez-Jiménez, M.J.: Evolutionary Membrane Computing: A Comprehensive Survey. Inform Sciences 279, 528–551 (2014)

    Article  Google Scholar 

  7. Bernardini, F., Gheorghe, M.: Population P systems. J. Univers. Comput. Sci. 10, 509–539 (2004)

    MathSciNet  Google Scholar 

  8. Storn, R., Price, K.: Differential evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Global Optim. 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, J.Q., Sanderson, A.C.: JADE: Adaptive Differential Evolution with Optional External Archive. IEEE T. Evolut. Comput. 13, 945–958 (2009)

    Article  Google Scholar 

  10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE T. Evolut. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  11. Kukkonen, S., Lampinen, J.: GDE3: The Third Evolution Step of Generalized Differential Evolution. In: IEEE CEC, pp. 443–450 (2005)

    Google Scholar 

  12. Robic, T., Filipic, B.: DEMO: Differential Evolution for Multiobjective Optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 520–533. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Deb, K., Mohan, M., Mishra, S.: Evaluating the ε-domination based Multi-objective Evolutionary Algorithm for a Quick Computation of Pareto-optimal Solutions. Evol. Comput. 13, 501–525 (2005)

    Article  Google Scholar 

  14. Li, H., Zhang, Q.F.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE T. Evolut. Comput. 13, 284–302 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheng, J., Zhang, G., Qin, Y. (2014). A Population-P-Systems-Inspired Membrane Algorithm for Multi-objective Optimization. In: Pan, L., Păun, G., Pérez-Jiménez, M.J., Song, T. (eds) Bio-Inspired Computing - Theories and Applications. Communications in Computer and Information Science, vol 472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45049-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45049-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45048-2

  • Online ISBN: 978-3-662-45049-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics