Skip to main content

Analysis of Influenza Vaccines

  • Chapter
  • First Online:
  • 3330 Accesses

Abstract

Influenza is a seasonal illness that occurs mostly in the winter periods, from October to March in the Northern hemisphere and from May to September in the Southern hemisphere (World Health Organization 2012b). Approximately 3–5 million cases of severe illness and 250,000–500,000 deaths occur every year worldwide, generating costs of billions of dollars (influenza and influenza-like illness) (World Health Organization 2009).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abelin A, Colegate T, Gardner S, Hehme N, Palache A (2011) Lessons from pandemic influenza A(H1N1): the research-based vaccine industry’s perspective. Vaccine 29:1135–1138

    Article  PubMed  Google Scholar 

  • Alexander DJ (2000) A review of avian influenza in different bird species. Vet Microbiol 74:3–13

    Article  CAS  PubMed  Google Scholar 

  • Baras BGJ, Jacob VAM (2010) Immunodiffusion assay for influenza virus. [US 2012/0178185 A1]. 9-23-2010. United States

    Google Scholar 

  • Belshe RB (2010) The need for quadrivalent vaccine against seasonal influenza. Vaccine 28(Suppl 4):D45–D53

    Article  PubMed  Google Scholar 

  • Bogs J, Veits J, Gohrbandt S, Hundt J, Stech O, Breithaupt A, Teifke JP, Mettenleiter TC, Stech J (2010) Highly pathogenic H5N1 influenza viruses carry virulence determinants beyond the polybasic hemagglutinin cleavage site. PLoS ONE 5:e11826

    Article  PubMed Central  PubMed  Google Scholar 

  • Chun S, Li C, Van DG, Wang J, Farnsworth A, Cui X, Rode H, Cyr TD, He R, Li X (2008) Universal antibodies and their applications to the quantitative determination of virtually all subtypes of the influenza A viral hemagglutinins. Vaccine 26:6068–6076

    Article  CAS  PubMed  Google Scholar 

  • Creskey MC, Li C, Wang J, Girard M, Lorbetskie B, Gravel C, Farnsworth A, Li X, Smith DG, Cyr TD (2012) Simultaneous quantification of the viral antigens hemagglutinin and neuraminidase in influenza vaccines by LC-MSE. Vaccine 30:4762–4770

    Article  CAS  PubMed  Google Scholar 

  • Dormitzer PR, Tsai TF, Del GG (2012) New technologies for influenza vaccines. Hum Vaccin Immunother 8:45–58

    Article  CAS  PubMed  Google Scholar 

  • Doroshenko A, Halperin SA (2009) Trivalent MDCK cell culture-derived influenza vaccine Optaflu (Novartis vaccines). Expert Rev Vaccines 8:679–688

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt OG (2012) Many ways to make an influenza virus—review of influenza virus reverse genetics methods. Influenza and Other Respir Viruses. doi: 10.1111/j.1750-2659.2012.00392.x

  • Fodor E, Devenish L, Engelhardt OG, Palese P, Brownlee GG, Garcia-Sastre A (1999) Rescue of influenza a virus from recombinant DNA. J Virol 73:9679–9682

    CAS  PubMed Central  PubMed  Google Scholar 

  • Friede M, Palkonyay L, Alfonso C, Pervikov Y, Torelli G, Wood D, Kieny MP (2011) WHO initiative to increase global and equitable access to influenza vaccine in the event of a pandemic: supporting developing country production capacity through technology transfer. Vaccine 29(Suppl 1):A2–A7

    Article  PubMed  Google Scholar 

  • Gambaryan AS, Robertson JS, Matrosovich MN (1999) Effects of egg-adaptation on the receptor-binding properties of human influenza A and B viruses. Virology 258:232–239

    Article  CAS  PubMed  Google Scholar 

  • Gambaryan AS, Tuzikov AB, Piskarev VE, Yamnikova SS, Lvov DK, Robertson JS, Bovin NV, Matrosovich MN (1997) Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: non-egg-adapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6’-sialyl(N-acetyllactosamine). Virology 232:345–350

    Article  CAS  PubMed  Google Scholar 

  • Gething MJ, Bye J, Skehel J, Waterfield M (1980) Cloning and DNA sequence of double-stranded copies of haemagglutinin genes from H2 and H3 strains elucidates antigenic shift and drift in human influenza virus. Nature 287:301–306

    Article  CAS  PubMed  Google Scholar 

  • Gravel C et al (2010) Qualitative and quantitative analyses of virtually all subtypes of influenza A and B viral neuraminidases using antibodies targeting the universally conserved sequences. Vaccine 28:5774–5784

    Article  CAS  PubMed  Google Scholar 

  • Gupta RK, Semenova EA, McCormick WM (2011) Guidance on SRID method for the inactivated influenza virus vaccines. In: PhRMA Annual Meeting 12-15-2011

    Google Scholar 

  • Hashem AM, Gravel C, Farnsworth A, Zou W, Lemieux M, Xu K, Li C, Wang J, Goneau MF, Merziotis M (2013) A novel synthetic receptor-Based immunoassay for influenza vaccine quantification. PLoS ONE 8:e55428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hay AJ, Gregory V, Douglas AR, Lin YP (2001) The evolution of human influenza viruses. Philos Trans R Soc Lond B Biol Sci 356:1861–1870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hehme N, Engelmann H, Kuenzel W, Neumeier E, Saenger R (2004) Immunogenicity of a monovalent, aluminum-adjuvanted influenza whole virus vaccine for pandemic use. Virus Res 103:163–171

    Article  CAS  PubMed  Google Scholar 

  • Hehme N, Engelmann H, Kunzel W, Neumeier E, Sanger R (2002) Pandemic preparedness: lessons learnt from H2N2 to H9N2 candidate vaccines. Med Microbiol Immunol 191:203–208

    Article  CAS  PubMed  Google Scholar 

  • Hiti AL, Davis AR, Nayak DP (1981) Complete sequence analysis shows that the hemagglutinins of the H0 and H2 subtypes of human influenza virus are closely related. Virology 111:113–124

    Article  CAS  PubMed  Google Scholar 

  • InDevR (2013) Titer on chip. http://indevr.com/products/in-the-works/. 11-28-2013. Ref Type: Internet Communication

  • Kapteyn JC et al (2009) HPLC-based quantification of haemagglutinin in the production of egg- and MDCK cell-derived influenza virus seasonal and pandemic vaccines. Vaccine 27:1468–1477

    Article  CAS  PubMed  Google Scholar 

  • Kapteyn JC et al (2006) Haemagglutinin quantification and identification of influenza A&B strains propagated in PER.C6 cells: a novel RP-HPLC method. Vaccine 24:3137–3144

    Article  CAS  PubMed  Google Scholar 

  • Kieny MP et al (2006) A global pandemic influenza vaccine action plan. Vaccine 24:6367–6370

    Article  PubMed  Google Scholar 

  • Kilbourne ED (1969) Future influenza vaccines and the use of genetic recombinants. Bull World Health Organ 41:643–645

    CAS  PubMed Central  PubMed  Google Scholar 

  • Killian M (2008) Hemagglutination assay for the avian influenza virus. In: Avian influenza virus (ed). E.Spackman Humana Press, New York, pp 47–52

    Google Scholar 

  • Kistner O, Barrett PN, Mundt W, Reiter M, Schober-Bendixen S, Dorner F (1998) Development of a mammalian cell (Vero) derived candidate influenza virus vaccine. Vaccine 16:960–968

    Article  CAS  PubMed  Google Scholar 

  • Klimov A, Balish A, VeguillaV, Sun H, Schiffer J, Lu X, Katz JM, Hancock K (2012) Influenza virus titration, antigenic characterization, and serological methods for antibody detection. In: Influenza virus, Springer, Berlin, pp 25–51

    Google Scholar 

  • Landry N, Ward BJ, Trepanier S, Montomoli E, Dargis M, Lapini G, Vezina LP (2010) Preclinical and clinical development of plant-made virus-like particle vaccine against avian H5N1 influenza. PLoS ONE 5:e15559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Legastelois I et al (2011) Avian glycan-specific IgM monoclonal antibodies for the detection and quantitation of type A and B haemagglutinins in egg-derived influenza vaccines. J Virol Methods 178:129–136

    Article  CAS  PubMed  Google Scholar 

  • Li C, Jaentschke B, Song Y, Wang J, Cyr TD, Van DG, He R, Li X (2010) A simple slot blot for the detection of virtually all subtypes of the influenza A viral hemagglutinins using universal antibodies targeting the fusion peptide. Nat Protoc 5:14–19

    Article  CAS  PubMed  Google Scholar 

  • Lorbetskie B, Wang J, Gravel C, Allen C, Walsh M, Rinfret A, Li X, Girard M (2011) Optimization and qualification of a quantitative reversed-phase HPLC method for hemagglutinin in influenza preparations and its comparative evaluation with biochemical assays. Vaccine 29:3377–3389

    Article  CAS  PubMed  Google Scholar 

  • Minor PD (2010) Vaccines against seasonal and pandemic influenza and the implications of changes in substrates for virus production. Clin Infect Dis 50:560–565

    Article  PubMed  Google Scholar 

  • Neumann G et al (1999) Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci USA 96:9345–9350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nichol KL (2008) Efficacy and effectiveness of influenza vaccination. Vaccine 26:D17–D22

    Article  CAS  PubMed  Google Scholar 

  • Nichol KL, Treanor JJ (2006) Vaccines for seasonal and pandemic influenza. J Infect Dis 194(Suppl 2):S111–S118

    Article  PubMed  Google Scholar 

  • Nicolson C, Major D, Wood JM, Robertson JS (2005) Generation of influenza vaccine viruses on Vero cells by reverse genetics: an H5N1 candidate vaccine strain produced under a quality system. Vaccine 23:2943–2952

    Article  CAS  PubMed  Google Scholar 

  • Nilsson CE, Abbas S, Bennemo M, Larsson A, Hamalainen MD, Frostell-Karlsson A (2010) A novel assay for influenza virus quantification using surface plasmon resonance. Vaccine 28:759–766

    Article  PubMed  Google Scholar 

  • Osterholm MT, Kelley NS, Sommer A, Belongia EA (2012) Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis. Lancet Infect Dis 12:36–44

    Article  PubMed  Google Scholar 

  • Pincus S, Boddapati S, Li J, Sadowski T (2010) Release and stability testing programs for a novel virus-like particle vaccine

    Google Scholar 

  • Robertson JS, Cook P, Nicolson C, Newman R, Wood JM (1994) Mixed populations in influenza virus vaccine strains. Vaccine 12:1317–1322

    Article  CAS  PubMed  Google Scholar 

  • Robertson JS, Naeve CW, Webster RG, Bootman JS, Newman R, Schild GC (1985) Alterations in the hemagglutinin associated with adaptation of influenza B virus to growth in eggs. Virology 143:166–174

    Article  CAS  PubMed  Google Scholar 

  • Robertson JS, Nicolson C, Bootman JS, Major D, Robertson EW, Wood JM (1991) Sequence analysis of the haemagglutinin (HA) of influenza A (H1N1) viruses present in clinical material and comparison with the HA of laboratory-derived virus. J Gen Virol 72(Pt 11):2671–2677

    Article  CAS  PubMed  Google Scholar 

  • Robertson JS, Nicolson C, Major D, Robertson EW, Wood JM (1993) The role of amniotic passage in the egg-adaptation of human influenza virus is revealed by haemagglutinin sequence analyses. J Gen Virol 74(Pt 10):2047–2051

    Article  CAS  PubMed  Google Scholar 

  • Rodda SJ, Gallichio HA, Hampson AW (1981) The single radial immunodiffusion assay highlights small antigenic differences among influenza virus hemagglutinins. J Clin Microbiol 14:479–482

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schulze IT (1997) Effects of glycosylation on the properties and functions of influenza virus hemagglutinin. J Infect Dis 176(Suppl 1):S24–S28

    Article  PubMed  Google Scholar 

  • Schwarz RT, Klenk HD (1981) Carbohydrates of influenza virus. IV. Strain-dependent variations. Virology 113:584–593

    Article  CAS  PubMed  Google Scholar 

  • Sizer PJ, King-Haughey J, Simpkin D, Williams R (2008) Assays for adsorbed influenza vaccines. 12/810,307[US 2011/0045457 A1]. 12-24-2008. United States. Ref Type: Patent

    Google Scholar 

  • Stephenson I, Nicholson KG, Gluck R, Mischler R, Newman RW, Palache AM, Verlander NQ, Warburton F, Wood JM, Zambon MC (2003) Safety and antigenicity of whole virus and subunit influenza A/Hong Kong/1073/99 (H9N2) vaccine in healthy adults: phase I randomised trial. Lancet 362:1959–1966

    Article  CAS  PubMed  Google Scholar 

  • Suarez DL (2010) Avian influenza: our current understanding. Anim Health Res Rev 11:19–33

    Article  PubMed  Google Scholar 

  • Tong S et al (2012) A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci USA 109:4269–4274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Treanor JJ, Wilkinson BE, Masseoud F, Hu-Primmer J, Battaglia R, O’Brien D, Wolff M, Rabinovich G, Blackwelder W, Katz JM (2001) Safety and immunogenicity of a recombinant hemagglutinin vaccine for H5 influenza in humans. Vaccine 19:1732–1737

    Article  CAS  PubMed  Google Scholar 

  • van Kessel G, Geels MJ, de Weerd S, Buijs LJ, de Bruijni MA, Glansbeek HL, van den Bosch JF, Heldens JG, van den Heuvel ER (2012) Development and qualification of the parallel line model for the estimation of human influenza haemagglutinin content using the single radial immunodiffusion assay. Vaccine 30:201–209

    Google Scholar 

  • Veits J et al (2012) Avian influenza virus hemagglutinins H2, H4, H8, and H14 support a highly pathogenic phenotype. Proc Natl Acad Sci USA 109:2579–2584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verhoeyen M, Fang R, Jou WM, Devos R, Huylebroeck D, Saman E, Fiers W (1980) Antigenic drift between the haemagglutinin of the Hong Kong influenza strains A/Aichi/2/68 and A/Victoria/3/75. Nature 286:771–776

    Article  CAS  PubMed  Google Scholar 

  • Wagner R, Wolff T, Herwig A, Pleschka S, Klenk HD (2000) Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics. J Virol 74:6316–6323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wareing MD, Tannock GA (2001) Live attenuated vaccines against influenza; an historical review. Vaccine 19:3320–3330

    Article  CAS  PubMed  Google Scholar 

  • Webby RJ, Perez DR, Coleman JS, Guan Y, Knight JH, Govorkova EA, Clain-Moss LR, Peiris JS, Rehg JE, Tuomanen EI (2004) Responsiveness to a pandemic alert: use of reverse genetics for rapid development of influenza vaccines. Lancet 363:1099–1103

    Article  CAS  PubMed  Google Scholar 

  • Williams MS (1993) Single-radial-immunodiffusion as an in vitro potency assay for human inactivated viral vaccines. Vet Microbiol 37:253–262

    Article  CAS  PubMed  Google Scholar 

  • Williams TL, Luna L, Guo Z, Cox NJ, Pirkle JL, Donis RO, Barr JR (2008) Quantification of influenza virus hemagglutinins in complex mixtures using isotope dilution tandem mass spectrometry. Vaccine 26:2510–2520

    Article  CAS  PubMed  Google Scholar 

  • Wood JM, Schild GC, Newman RW, Seagroatt V (1977) An improved single-radial-immunodiffusion technique for the assay of influenza haemagglutinin antigen: application for potency determinations of inactivated whole virus and subunit vaccines. J Biol Stand 5:237–247

    Article  CAS  PubMed  Google Scholar 

  • Wood JM, Seagroatt V, Schild GC, Mayner RE, Ennis FA (1981) International collaborative study of single-radial-diffusion and immunoelectrophoresis techniques for the assay of haemagglutinin antigen of influenza virus. J Biol Stand 9:317–330

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2006) Global pandemic influenza action plan to increase vaccine supply. In: Immunization, vaccines, and biologicals, epidemic and pandemic alert and response. WHO, Geneva, Switzerland

    Google Scholar 

  • World Health Organization (2009) Influenza Fact sheet 2011. http://www.who.int/mediacentre/factsheets/fs211/en. Ref Type: Generic

  • World Health Organization (2012a) Geneva, 17 to 21 October 2011 Generic protocol for the calibration of seasonal/pandemic influenza antigen working reagents by WHO Essential Regulatory Laboratories. Ref Type: Report

    Google Scholar 

  • World Health Organization (2012b) WHO global influenza surveillance network. Manual for the laboratory diagnosis and virological surveillance of influenza. Ref Type: Generic

    Google Scholar 

  • Young SA (2000) Clinical virology manual. Am Soc Microbiol

    Google Scholar 

  • Zhang W et al (2011) Increase in viral yield in eggs and MDCK cells of reassortant H5N1 vaccine candidate viruses caused by insertion of 38 amino acids into the NA stalk. Vaccine 29:8032–8041

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Alain Moisset .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moisset, PA., Pederson, J., Landry, N. (2015). Analysis of Influenza Vaccines. In: Nunnally, B., Turula, V., Sitrin, R. (eds) Vaccine Analysis: Strategies, Principles, and Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45024-6_4

Download citation

Publish with us

Policies and ethics