Skip to main content

Bulky Nitrile Coordination-Induced Skeleton Rearrangement of Zr-/Si-Containing Metallacycles and Selective Synthesis of 5-Azaindoles

  • Chapter
  • First Online:
The Chemistry of Zirconacycles and 2,6-Diazasemibullvalenes

Part of the book series: Springer Theses ((Springer Theses))

  • 349 Accesses

Abstract

Bulky nitrile coordination-induced Zr–C/Si–C bond cleavage and reorganization of zirconacyclobutene–silacyclobutene complex 3-1, affording zirconacyclopropene–azasilacyclopentadiene complexes 3-2 as only one nitrile involved intermediate. The experimental results showed that the reaction pathways of 3-1 with bulky nitrile and less-bulky nitriles were different, which behaved as “chemical transformer” reactivity. Complexes 3-2 have shown various synthetically useful reaction patterns. A variety of novel Zr/Si organo-bi-metallic compounds and Si/N heterocyclic compounds were obtained in high yields. Based on the reaction chemistry of complexes 3-2 and two different molecules of nitrile, the author investigated zirconocene-mediated multi-component coupling of bis(alkynyl)silanes and three different nitriles toward synthesis of 5-azaindoles with different substituents at 2,4,6-positions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartwig JF (2010) Organotransition metal chemistry from bonding to catalysis. University Science Books, Sausalito, pp 217–260

    Google Scholar 

  2. Hikichi S, Kobayashi C, Yoshizawa M et al (2010) Tuning the stability and reactivity of metal-bound alkylperoxide by remote site substitution of the ligand. Chem Asian J 5:2086–2092

    Article  CAS  Google Scholar 

  3. Casey CP, Kraft S, Kavana M (2001) Intramolecular CH insertion reactions of (pentamethylcyclopentadienyl) rhenium alkynylcarbene complexes. Organometallics 20:3795–3799

    Article  CAS  Google Scholar 

  4. Evans WJ (2002) The expansion of divalent organolanthanide reduction chemistry via new molecular divalent complexes and sterically induced reduction reactivity of trivalent complexes. J Organomet Chem 647:2–11

    Article  CAS  Google Scholar 

  5. Ren S, Igarashi E, Nakajima K et al (2009) 1-Chloro-4,5,6,7-tetraalkyldihydroindene formation by reaction of bis(cyclopentadienyl)titanacyclopentadienes with titanium chloride. J Am Chem Soc 131:7492–7493

    Article  CAS  Google Scholar 

  6. Sun Y, Chan HS, Zhao H et al (2006) Ruthenium-mediated coupling/cycloaddition of the cyclopentadienyl ligand in [{η5:σ-Me2C(C5H4)(C2B10H10)}Ru(NCCH3)2] with alkynes. Angew Chem Int Ed 45:5533–5536

    Article  CAS  Google Scholar 

  7. Suresh CH, Koga N (2006) Aromaticity-driven rupture of CN Triple and CC double bonds: mechanism of the reaction between Cp2Ti(C4H4) and RCN. Organometallics 25:1924–1931

    Article  CAS  Google Scholar 

  8. Xi Z, Sato K, Gao Y et al (2003) Unprecedented double C–C bond cleavage of a cyclopentadienyl ligand. J Am Chem Soc 125:9568–9569

    Article  CAS  Google Scholar 

  9. Tillack A, Baumann W, Ohff A et al (1996) Intramolekulare Cyclisierung von terminal disubstituierten α, ω-Diinen an Titanocen “Cp2Ti” mit einer nachfolgenden, ungewöhnlichen Cp-ringöffnung und neuen intramolekularen CC-Knüpfung. J Organomet Chem 520:187–193

    Article  Google Scholar 

  10. Erker G, Venne-Dunker S, Kehr G et al (2004) Evidence for a carbon–carbon coupling reaction to proceed through a planar-tetracoordinate carbon intermediate. Organometallics 23:4391–4395

    Article  CAS  Google Scholar 

  11. Temme B, Erker G, Fröhlich R et al (1994) Heterodimetal-Betaine chemistry: catalytic and stoichiometric coupling of alkynyl ligands under the joint influence of zirconium and boron centers. Angew Chem Int Ed 33:1480–1482

    Article  Google Scholar 

  12. Xi Z, Fischer R, Hara R et al (1997) Zirconocene-mediated intramolecular carbon–carbon bond formation of two alkynyl groups of bis(alkynyl)silanes. J Am Chem Soc 119:12842–12848

    Article  CAS  Google Scholar 

  13. Takahashi T, Xi Z, Obora Y et al (1995) Intramolecular coupling of alkynyl groups of bis(alkynyl)silanes mediated by zirconocene compounds: formation of silacyclobutene derivatives. J Am Chem Soc 117:2665–2666

    Article  CAS  Google Scholar 

  14. Anderson LL, Woerpel KA (2009) Formation and utility of azasilacyclopentadienes derived from silacyclopropenes and nitriles. Org Lett 11:425–428

    Article  CAS  Google Scholar 

  15. Franz AK, Woerpel KA (2000) Development of reactions of silacyclopropanes as new methods for stereoselective organic synthesis. Acc Chem Res 33:813–820

    Article  CAS  Google Scholar 

  16. Zhang S, Zhang WX, Zhao J et al (2010) Cleavage and re-organization of Zr-C/Si-C Bonds Leading to Zr/Si-N organometallic and heterocyclic compounds. J Am Chem Soc 132:14042–14045

    Article  CAS  Google Scholar 

  17. Jemmis ED, Roy S, Burlakov VV et al (2010) Are Metallocene–Acetylene (M = Ti, Zr, Hf) complexes aromatic metallacyclopropenes? Organometallics 29:76–81

    Article  CAS  Google Scholar 

  18. Miller AD, Johnson SA, Tupper KA et al (2009) Unsymmetrical zirconacyclopentadienes from isolated zirconacyclopropenes with 1-alkynylphosphine ligands. Organometallics 28:1252–1262

    Article  CAS  Google Scholar 

  19. Takahashi T, Xi C, Xi Z et al (1998) Selective intermolecular coupling of alkynes with nitriles and ketones via β,β′ carbon–carbon bond cleavage of zirconacyclopentenes. J Org Chem 63:6802–6806

    Article  CAS  Google Scholar 

  20. Lee KY, Seo J, Kim JN (2006) Serendipitous synthesis of 2-amino-2,3-dihydrobenzofuran derivatives starting from Baylis–Hillman adducts. Tetrahedron Lett 47:3913–3917

    Article  CAS  Google Scholar 

  21. Zuckerman RL, Bergman RG (2001) Mechanistic investigation of cycloreversion/cycloaddition reactions between zirconocene metallacycle complexes and unsaturated organic substrates. Organometallics 20:1792–1807

    Article  CAS  Google Scholar 

  22. Xi Z, Hara R, Takahashi T (1995) Highly selective and practical alkyne-alkyne cross-coupling using Cp2ZrBu2 and ethylene. J Org Chem 60:4444–4448

    Article  CAS  Google Scholar 

  23. Liu Y, Sun W-H, Nakajima K et al (1998) Reductive elimination of α-alkynyl substituted zirconacyclopentenes: formation of cyclobutene derivatives. Chem Commun 10:1133–1134

    Article  Google Scholar 

  24. Zhang H, Fu X, Chen J et al (2009) Generation of allenic/propargylic zirconium complexes and subsequent cross-coupling reactions: a facile synthesis of multisubstituted allenes. J Org Chem 74:9351–9358

    Article  CAS  Google Scholar 

  25. Ugolotti J, Kehr G, Fröhlich R et al (2009) Five-membered zirconacycloallenoids: synthesis and characterization of members of a unique class of internally metal-stabilized bent allenoid compounds. J Am Chem Soc 131:1996–2007

    Article  CAS  Google Scholar 

  26. Suzuki N, Hashizume D, Koshino H et al (2008) Transformation of a 1-zirconacyclopent-3-yne, a five-membered cycloalkyne, into a 1-zirconacyclopent-3-ene and formal “1-zirconacyclopenta-2,3-dienes”. Angew Chem Int Ed 47:5198–5202

    Article  CAS  Google Scholar 

  27. Fu X, Chen J, Li G et al (2009) Diverse reactivity of zirconacyclocumulenes derived from coupling of benzynezirconocenes with 1,3-butadiynes towards acyl cyanides: synthesis of indeno[2,1-b]pyrroles or [3] cumulenones. Angew Chem Int Ed 48:5500–5504

    Article  CAS  Google Scholar 

  28. Burlakov VV, Arndt P, Baumann W et al (2004) Reactions of five-membered zirconacyclocumulenes with tris(pentafluorophenyl)borane: carbon–carbon double bond cleavage and formation of novel zwitterionic complexes. Organometallics 23:5188–5192

    Article  CAS  Google Scholar 

  29. Inagaki F, Mizutani M, Kuroda N et al (2009) Generation of N-(tert-Butoxycarbonyl)indole-2,3-quinodimethane and its [4 + 2]-type cycloaddition. J Org Chem 74:6402–6405

    Article  CAS  Google Scholar 

  30. Saito A, Kanno A, Hanzawa Y (2007) Synthesis of 2,3-disubstituted indoles by a rhodium-catalyzed aromatic amino-claisen rearrangement of N-propargyl anilines. Angew Chem Int Ed 46:3931–3933

    Article  CAS  Google Scholar 

  31. Peng L, Zhang X, Ma J et al (2007) 1,2-Sulfanyl group migration as a driving force: new approach to pyrroles by reaction of allenic aldehydes with amines. Org Lett 9:1445–1448

    Article  CAS  Google Scholar 

  32. Zhang S, Zhang WX, Zhao J et al (2011) One-pot selective syntheses of 5-azaindoles through zirconocene-mediated multicomponent reactions with three different nitrile components and one alkyne component. Chem Eur J 17:2442–2449

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoguang Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, S. (2015). Bulky Nitrile Coordination-Induced Skeleton Rearrangement of Zr-/Si-Containing Metallacycles and Selective Synthesis of 5-Azaindoles. In: The Chemistry of Zirconacycles and 2,6-Diazasemibullvalenes. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45021-5_3

Download citation

Publish with us

Policies and ethics