Advertisement

Recent Progress in Complex Network Analysis: Properties of Random Intersection Graphs

  • Mindaugas Bloznelis
  • Erhard GodehardtEmail author
  • Jerzy Jaworski
  • Valentas Kurauskas
  • Katarzyna Rybarczyk
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

Experimental results show that in large complex networks (such as internet, social or biological networks) there exists a tendency to connect elements which have a common neighbor. In theoretical random graph models, this tendency is described by the clustering coefficient being bounded away from zero. Complex networks also have power-law degree distributions and short average distances (small world phenomena). These are desirable features of random graphs used for modeling real life networks. We survey recent results concerning various random intersection graph models showing that they have tunable clustering coefficient, a rich class of degree distributions including power-laws, and short average distances.

Notes

Acknowledgements

The work of M. Bloznelis and V. Kurauskas was supported by the Lithuanian Research Council (grant MIP-067/2013). J. Jaworski and K. Rybarczyk acknowledge the support by the National Science Centre (NCN)—DEC-2011/01/B/ST1/03943. Co-operation between E. Godehardt and J. Jaworski was also supported by Deutsche Forschungsgemeinschaft (grant no. GO 490/17-1).

References

  1. Ball, F., Sirl, D., & Trapman, P. (2014). Epidemics on random intersection graphs. The Annals of Applied Probability, 24, 1081–1128.CrossRefzbMATHMathSciNetGoogle Scholar
  2. Balogh, J., Bohman, T., & Mubayi, D. (2009). Erdős–Ko–Rado in random hypergraphs. Combinatorics, Probability and Computing, 18, 629–646.CrossRefzbMATHMathSciNetGoogle Scholar
  3. Barbour, A. D., & Reinert, G. (2011). The shortest distance in random multi-type intersection graphs. Random Structures and Algorithms, 39, 179–209.CrossRefzbMATHMathSciNetGoogle Scholar
  4. Barrat, A., & Weigt, M. (2000). On the properties of small-world networks. The European Physical Journal B, 13, 547–560.CrossRefGoogle Scholar
  5. Behrisch, M. (2007). Component evolution in random intersection graphs. The Electronic Journal of Combinatorics, 14(1), R17MathSciNetGoogle Scholar
  6. Behrisch, M., Taraz, A., & Ueckerdt, M. (2009). Colouring random intersection graphs and complex networks. SIAM Journal on Discrete Mathematics, 23, 288–299.CrossRefzbMATHMathSciNetGoogle Scholar
  7. Blackburn, S., & Gerke, S. (2009). Connectivity of the uniform random intersection graph. Discrete Mathematics, 309, 5130–5140.CrossRefzbMATHMathSciNetGoogle Scholar
  8. Blackburn, S., Stinson, D., & Upadhyay, J. (2012). On the complexity of the herding attack and some related attacks on hash functions. Designs, Codes and Cryptography, 64, 171–193.CrossRefzbMATHMathSciNetGoogle Scholar
  9. Bloznelis, M. (2008). Degree distribution of a typical vertex in a general random intersection graph. Lithuanian Mathematical Journal, 48, 38–45.CrossRefzbMATHMathSciNetGoogle Scholar
  10. Bloznelis, M. (2009). Loglog distances in a power law random intersection graphs. Preprint 09059, CRC701. http://www.math.uni-bielefeld.de/sfb701.
  11. Bloznelis, M. (2010a). A random intersection digraph: Indegree and outdegree distributions. Discrete Mathematics, 310, 2560–2566.CrossRefzbMATHMathSciNetGoogle Scholar
  12. Bloznelis, M. (2010b). Component evolution in general random intersection graphs. SIAM Journal on Discrete Mathematics, 24, 639–654.CrossRefzbMATHMathSciNetGoogle Scholar
  13. Bloznelis, M. (2010c). The largest component in an inhomogeneous random intersection graph with clustering. The Electronic Journal of Combinatorics, 17(1), R110.MathSciNetGoogle Scholar
  14. Bloznelis, M. (2013). Degree and clustering coefficient in sparse random intersection graphs. The Annals of Applied Probability, 23, 1254–1289.CrossRefzbMATHMathSciNetGoogle Scholar
  15. Bloznelis, M., & Damarackas, J. (2013). Degree distribution of an inhomogeneous random intersection graph. The Electronic Journal of Combinatorics, 20(3), R3.MathSciNetGoogle Scholar
  16. Bloznelis, M., Godehardt, E., Jaworski, J., Kurauskas, V., & Rybarczyk, K. (2015). Recent progress in complex network analysis—Models of random intersection graphs. In B. Lausen, S. Krolak-Schwerdt, & M. Boehmer (Eds.), European Conference on Data Analysis. Berlin/Heidelberg/New York: Springer (in this volume).Google Scholar
  17. Bloznelis, M., Jaworski, J., & Kurauskas, V. (2013). Assortativity and clustering of sparse random intersection graphs. Electronic Journal of Probability, 18, N-38.Google Scholar
  18. Bloznelis, M., Jaworski, J., & Rybarczyk, K. (2009). Component evolution in a secure wireless sensor network. Networks, 53(1), 19–26.CrossRefzbMATHMathSciNetGoogle Scholar
  19. Bloznelis, M., & Karoński, M. (2013). Random intersection graph process. In A. Bonato, M. Mitzenmacher, & P. Pralat (Eds.), WAW 2013. Lecture notes in computer science (Vol. 8305, pp. 93–105). Switzerland: Springer International Publishing.Google Scholar
  20. Bloznelis, M., & Kurauskas, V. (2012). Clustering function: A measure of social influence. http://arxiv.org/abs/1207.4941.
  21. Bloznelis, M., & Kurauskas, V. (2013). Large cliques in sparse random intersection graphs. arXiv:1302.4627 [math.CO].Google Scholar
  22. Bloznelis, M., & Łuczak, T. (2013). Perfect matchings in random intersection graphs. Acta Mathematica Hungarica, 138, 15–33.CrossRefzbMATHMathSciNetGoogle Scholar
  23. Bloznelis, M., & Radavičius, I. (2011). A note on Hamiltonicity of uniform random intersection graphs. Lithuanian Mathematical Journal, 51(2), 155–161.CrossRefzbMATHMathSciNetGoogle Scholar
  24. Bradonjic, M., Hagberg, A., Hengartner, N. W., & Percus, A. G. (2010). Component evolution in general random intersection graphs. In R. Kumar & D. Sivakumar (Eds.), WAW 2010. Lecture notes in computer science (Vol. 6516, pp. 36–49). Berlin/Heidelberg: Springer.Google Scholar
  25. Britton, T., Deijfen, M., Lindholm, M., & Lagerås, N. A. (2008). Epidemics on random graphs with tunable clustering. Journal of Applied Probability, 45, 743–756.CrossRefzbMATHMathSciNetGoogle Scholar
  26. Deijfen, M., & Kets, W. (2009). Random intersection graphs with tunable degree distribution and clustering. Probability in the Engineering and Informational Sciences, 23, 661–674.CrossRefzbMATHMathSciNetGoogle Scholar
  27. Eschenauer, L., & Gligor, V. D. (2002). A key-management scheme for distributed sensor networks. In Proceedings of the 9th ACM Conference on Computer and Communications Security (pp. 41–47).Google Scholar
  28. Foudalis, I., Jain, K., Papadimitriou, C., & Sideri, M. (2011). Modeling social networks through user background and behavior. In A. Frieze, P. Horn, & P. Pralat (Eds.), WAW 2011. Lecture notes in computer science (Vol. 6732, pp. 85–102). Berlin/Heidelberg: Springer.Google Scholar
  29. Godehardt, E., Jaworski, J., & Rybarczyk, K. (2007). Random intersection graphs and classification. In R. Decker & H.-J. Lenz (Eds.), Advances in data analysis (pp. 67–74). Berlin/Heidelberg/New York: Springer.CrossRefGoogle Scholar
  30. Godehardt, E., Jaworski, J., & Rybarczyk, K. (2012). Clustering coefficients of random intersection graphs. In W. Gaul, A. Geyer-Schulz, L. Schmidt-Thieme, & J. Kunze (Eds.), Challenges at the interface of data analysis, computer science, and optimization (pp. 243–253). Berlin/Heidelberg/New York: Springer.CrossRefGoogle Scholar
  31. Jackson, O. M., & Rogers, B. W. (2007). Meeting strangers and friends of friends: How random are social networks? American Economic Review, 97, 890–915.CrossRefGoogle Scholar
  32. Janson, S., Łuczak, T., & Norros, I. (2010a). Large cliques in a power-law random graph. Journal of Applied Probability, 47, 1124–1135.CrossRefzbMATHMathSciNetGoogle Scholar
  33. Janson, S., Łuczak, T., & Ruciński, A. (2010b). Random graphs. New York: Wiley.Google Scholar
  34. Jaworski, J., Karoński, M., & Stark, D. (2006). The degree of a typical vertex in generalized random intersection graph models. Discrete Mathematics, 306, 2152–2165.CrossRefzbMATHMathSciNetGoogle Scholar
  35. Jaworski, J., & Stark, D. (2008). The vertex degree distribution of passive random intersection graph models. Combinatorics, Probability and Computing, 17, 549–558.CrossRefzbMATHMathSciNetGoogle Scholar
  36. Karoński, M., Scheinerman, E. R., & Singer-Cohen, K. B. (1999). On random intersection graphs: The subgraph problem. Combinatorics, Probability and Computing, 8, 131–159.CrossRefzbMATHMathSciNetGoogle Scholar
  37. Kurauskas, V. (2013). On small subgraphs in a random intersection digraph. Discrete Mathematics, 313, 872–885.CrossRefzbMATHMathSciNetGoogle Scholar
  38. Kurauskas, V., & Rybarczyk, K. (2013). On the chromatic index of random uniform hypergraphs SIAM Journal on Discrete Mathematics. To appear.Google Scholar
  39. Lagerås, A. N., & Lindholm, M. (2008). A note on the component structure in random intersection graphs with tunable clustering. Electronic Journal of Combinatorics, 15(1), N10.Google Scholar
  40. Newman, M. E. J. (2003). Properties of highly clustered networks. Physical Review E, 68, 026121.CrossRefGoogle Scholar
  41. Newman, M. E. J., Strogatz, S. H., & Watts, D. J. (2001). Random graphs with arbitrary degree distributions and their applications. Physical Review E, 64, 026118.CrossRefGoogle Scholar
  42. Nikoletseas, S., Raptopoulos, C., & Spirakis, P. G. (2011). On the independence number and hamiltonicity of uniform random intersection graphs. Theoretical Computer Science, 412, 6750–6760.CrossRefzbMATHMathSciNetGoogle Scholar
  43. Nikoletseas, S., Raptopoulos, C., & Spirakis, P. (2012). Maximum cliques in graphs with small intersection number and random intersection graphs. In Mathematical foundations of computer science (pp.728–739). Berlin/Heidelberg: Springer.Google Scholar
  44. Ravasz, E., & Barabási, A. L. (2003). Hierarchical organization in complex networks. Physical Review E, 67, 026112.CrossRefGoogle Scholar
  45. Rybarczyk, K. (2011a). Diameter, connectivity, and phase transition of the uniform random intersection graph. Discrete Mathematics, 311, 1998–2019.CrossRefzbMATHMathSciNetGoogle Scholar
  46. Rybarczyk, K. (2011c). Sharp threshold functions for random intersection graphs via a coupling method. The Electronic Journal of Combinatorics, 18(1), P36.MathSciNetGoogle Scholar
  47. Rybarczyk, K. (2012). The degree distribution in random intersection graphs. In W. Gaul, A. Geyer-Schulz, L. Schmidt-Thieme, & J. Kunze (Eds.), Challenges at the interface of data analysis, computer science, and optimization (pp. 291–299). Berlin/Heidelberg/New York: Springer.CrossRefGoogle Scholar
  48. Rybarczyk, K. (2013). The coupling method for inhomogeneous random intersection graphs. arXiv:1301.0466.Google Scholar
  49. Rybarczyk, K. (2014). Constructions of independent sets in random intersection graphs. Theoretical Computer Science, 524, 103–125.CrossRefzbMATHMathSciNetGoogle Scholar
  50. Rybarczyk, K., & Stark, D. (2010). Poisson approximation of the number of cliques in random intersection graphs. Journal of Applied Probability, 47, 826–840.CrossRefzbMATHMathSciNetGoogle Scholar
  51. Singer, K. (1995). Random intersection graphs. Ph.D. thesis, The Johns Hopkins University.Google Scholar
  52. Stark, D. (2004). The vertex degree distribution of random intersection graphs. Random Structures and Algorithms, 24, 249–258.CrossRefzbMATHMathSciNetGoogle Scholar
  53. Strogatz, S. H., & Watts, D. J. (1998). Collective dynamics of small-world networks. Nature, 393, 440–442.CrossRefGoogle Scholar
  54. Yagan, O., & Makowski, A. M. (2012). Zero-one laws for connectivity in random key graphs, IEEE Transactions on Information Theory, 58, 2983–2999CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Mindaugas Bloznelis
    • 1
  • Erhard Godehardt
    • 2
    Email author
  • Jerzy Jaworski
    • 3
  • Valentas Kurauskas
    • 1
  • Katarzyna Rybarczyk
    • 3
  1. 1.Faculty of Mathematics and InformaticsVilnius UniversityVilniusLithuania
  2. 2.Clinic of Cardiovascular SurgeryHeinrich Heine UniversityDüsseldorfGermany
  3. 3.Faculty of Mathematics and Computer ScienceAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations