Advertisement

Correspondence Analysis, Cross-Autocorrelation and Clustering in Polyphonic Music

  • Christelle CoccoEmail author
  • François Bavaud
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

This paper proposes to represent symbolic polyphonic musical data as contingency tables based upon the duration of each pitch for each time interval. Exploratory data analytic methods involve weighted multidimensional scaling, correspondence analysis, hierarchical clustering, and general autocorrelation indices constructed from temporal neighborhoods. Beyond the analysis of single polyphonic musical scores, the methods sustain inter-voices as well as inter-scores comparisons, through the introduction of ad hoc measures of configuration similarity and cross-autocorrelation. Rich musical patterns emerge in the related applications, and preliminary results are encouraging for clustering tasks.

Keywords

Contingency Table Multiple Correspondence Analysis Exchange Matrix Music Piece Musical Score 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bavaud, F. (2013). Testing spatial autocorrelation in weighted networks: The modes permutation test. Journal of Geographical Systems, 15, 233–247.CrossRefGoogle Scholar
  2. Bavaud, F., Cocco, C., & Xanthos, A. (2012). Textual autocorrelation: Formalism and illustrations. In 11èmes Journées internationales d’analyse statistique des données textuelles (pp. 109–120). Liège: Université de Liège.Google Scholar
  3. Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis: Forecasting and control. San Francisco: Holden-Day.zbMATHGoogle Scholar
  4. Cliff, A. D., & Ord, J. K. (1981). Spatial processes: Models and applications. London: Pion.zbMATHGoogle Scholar
  5. Critchley, F., & Fichet, B. (1994). The partial order by inclusion of the principal classes of dissimilarity on a finite set, and some of their basic properties. In: B. Van Cutsem (Ed.), Classification and dissimilarity analysis (pp. 5–65). New York: Springer.CrossRefGoogle Scholar
  6. Ellis, D. P. W., & Poliner, G. E. (2007). Identifying ‘Cover Songs’ with chroma features and dynamic programming beat tracking. In IEEE International Conference on Acoustics, Speech and Signal Processing, 2007 (pp. IV-1429–IV-1432).Google Scholar
  7. Lavrenko, V., & Pickens, J. (2003). Polyphonic music modeling with random fields. In Proceedings of the Eleventh ACM International Conference on Multimedia (pp. 120–129), Berkeley, CA.Google Scholar
  8. Morando, M. (1981). L’analyse statistique des partitions de musique. In J.-P. Benzécri, et al. (Eds.), Pratique de l’analyse des données, tome 3: Linguistique et lexicologie (pp. 507–522). Paris: Dunod.Google Scholar
  9. Müller, M., & Ewert, S. (2011). Chroma toolbox: Matlab implementations for extracting variants of chroma-based audio features. In Proceedings of the 12th International Conference on Music Information Retrieval (pp. 215–220).Google Scholar
  10. Robert, P., & Escoufier, Y. (1976). A unifying tool for linear multivariate statistical methods: The RV-coefficient. Journal of the Royal Statistical Society. Series C (Applied Statistics), 25, 257–265.MathSciNetGoogle Scholar
  11. Weihs, C., Ligges, U., Mörchen, F., & Müllensiefen, D. (2007). Classification in music research. Advances in Data Analysis and Classification, 1, 255–291.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.University of LausanneLausanneSwitzerland

Personalised recommendations