Advertisement

Linear Modelling of Differences in Teacher Judgment Formation of School Tracking Recommendations

  • Thomas HörstermannEmail author
  • Sabine Krolak-Schwerdt
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

The present paper investigates the application of two regression-based approaches, individual multiple regression and hierarchical linear modelling, in modelling differences in judgment formation of primary school teachers’ secondary school track recommendations. Both approaches share the same theoretical framework of judgment formation as a weighted linear information integration, but differ in their capacity to take differences in judgment formation into account. First, both approaches were applied to empirical data on teachers’ track recommendations and led to deviating conclusions on differences in judgment formation. To investigate which approach results in more reliable representation of actual differences in judgment formation, both approaches were compared based on simulated data and hierarchical linear modelling performed slightly more accurate than individual regression. Thus, hierarchical linear modelling might be considered the preferable modelling approach in research on judgments on school tracking recommendations.

Keywords

Parental Support Hierarchical Linear Modelling Actual Student Migration Background Primary School Teacher 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aitkin, M., Anderson, D., & Hinde, J. (1981). Statistical modelling of data on teaching styles. Journal of the Royal Statistical Society. Series A, 144, 419–461.CrossRefGoogle Scholar
  2. Albert, A., & Anderson, J. A. (1984). On the existence of maximum likelihood estimates in logistic regression models. Biometrika, 71, 1–10.CrossRefzbMATHMathSciNetGoogle Scholar
  3. Anderson, N. H. (1974). Cognitive algebra: Integration theory applied to social attribution. In L. Berkowitz (Ed.), Advances in experimental social psychology (Vol. 7, pp. 1–100). New York: Academic Press.Google Scholar
  4. Bos, W., Lankes, E.-M., Prenzel, M., Schwippert, K., Wather, G., & Valtin, R. (2003). Erste Ergebnisse aus IGLU: Schülerleistungen am Ende der vierten Jahrgangsstufe im internationalen Vergleich. Münster: Waxmann.Google Scholar
  5. Dawes, R. M., & Corrigan, B. (1974). Linear models in decision making. Psychological Bulletin, 81, 95–106.CrossRefGoogle Scholar
  6. Dhami, M. K., & Harries, C. (2001). Fast and frugal versus regression models of human judgment. Thinking and Reasoning, 7, 5–27.CrossRefGoogle Scholar
  7. Glock, S., Krolak-Schwerdt, S., Klapproth, F., & Böhmer, M. (2013). Prädiktoren der Schullaufbahnempfehlung für die Schulzweige des Sekundarbereichs I. Pädagogische Rundschau, 67, 349–367.Google Scholar
  8. Heinze, G., & Schemper, M. (2002). A solution to the problem of separation in logistic regression. Statistics in Medicine, 21, 2409–2419.CrossRefGoogle Scholar
  9. Hunter, D. R., Martinussen, M., & Wiggins, M. (2003): Understanding how pilots make weather-related decisions. International Journal of Aviation Psychology, 13, 73–87.CrossRefGoogle Scholar
  10. Kristen, C. (2006). Ethnische Diskriminierung in der Grundschule? Die Vergabe von Noten und Bildungsempfehlungen. Kölner Zeitschrift für Soziologie und Sozialpsychologie, 58, 79–97.CrossRefGoogle Scholar
  11. Maaz, K., Baumert, J., Gresch, C., & Mcelvany, N. (2010). Der Übergang von der Grundschule in die weiterführende Schule. Leistungsgerechtigkeit und regionale, soziale und ethnisch-kulturelle Disparitäten. Bonn: Bundesministerium für Bildung und Forschung.Google Scholar
  12. Raudenbush, S. W., & Bryk, A. S. (1986). A hierarchical model for studying school effects. Sociology of Education, 59, 1–17.CrossRefGoogle Scholar
  13. Ständige Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland (KMK) (2004). Standards für die Lehrerbildung: Bildungswissenschaften. Bonn: KMK.Google Scholar
  14. Stubbe, T. C., & Bos, W. (2008). Schullaufbahnempfehlungen von Lehrkräften und Schullaufbahnentscheidungen von Eltern am Ende der vierten Jahrgangsstufe. Empirische Pädagogik, 22, 49–63.Google Scholar
  15. Van Ophuysen, S. (2006). Vergleich diagnostischer Entscheidungen von Novizen und Experten am Beispiel der Schullaufbahnempfehlungen. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 38, 154–161.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.University of Luxembourg, ECCS Research UnitWalferdangeLuxembourg

Personalised recommendations