Advertisement

A Game Theoretic Product Design Approach Considering Stochastic Partworth Functions

  • Daniel KrauscheEmail author
  • Daniel Baier
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

Developing new products is a necessary but costly and risky adventure. Therefore, the customers’ point of view and the prospective competitive environment have to be considered. Here, conjoint analysis has proven to be helpful since this preference modeling approach can be used to predict market shares [see, e.g., Baier and Gaul (J Econ 89(1–2):365–392, 1999), Baier and Gaul (Conjoint measurement: methods and applications. Springer, Berlin, pp. 47–66, 2007)]. When, additionally, competitive reactions must be considered, game theoretic approaches are a helpful extension [see, e.g., Choi and Desarbo (Market Lett 4(4):337–348, 1993), Steiner and Hruschka (OR Spektrum 22:71–95, 2000), Steiner (OR Spectrum 32:21–48, 2010)]. However, recently, new Bayesian procedures have been developed for conjoint analysis that allow to model customers’ partworth functions in a stochastic fashion. The idea is that customers have different preferences over time. In this paper we propose a new game theoretic approach that considers this new aspect. The new approach is applied to a (fictive) product design setting. A comparison to a traditional approach is presented.

Keywords

Nash Equilibrium Product Design Conjoint Analysis Customer Preference Choice Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Albritton, M. D., & Mcmullen, P. R. (2007). Optimal product design using a colony of virtual ants. European Journal of Operational Research, 176, 498–520.CrossRefzbMATHGoogle Scholar
  2. Baier, D., & Gaul, W. (1999). Optimal product positioning based on paired comparison data. Journal of Econometrics, 89(1–2), 365–392.zbMATHGoogle Scholar
  3. Baier, D., & Gaul, W. (2007). Market simulation using a probabilistic ideal vector model for conjoint data. In A. Gustafsson, A. Herrmann, & F. Huber (Eds.), Conjoint measurement: Methods and applications (pp. 47–66). Berlin: Springer.CrossRefGoogle Scholar
  4. Balk, B. M. (1989). Changing consumer preferences and the cost-of-living index: Theory and nonparametric expressions. Journal of Economics, 50, 157–169.CrossRefMathSciNetGoogle Scholar
  5. Choi, S. C., & Desarbo, W. S. (1993). Garne theoretic derivations of competitive strategies in conjoint analysis. Marketing Letters, 4(4), 337–348.Google Scholar
  6. Dodds, W. B., Monroe, K. B., & Grewal, D. (1991). The effects of price, brand, and store information on Buyers’ product evaluations. Journal of Marketing Research, 28, 307–19.CrossRefGoogle Scholar
  7. Gaul, W., Aust, E., & Baier, D. (1995). Gewinnorientierte Produktliniengestaltung unter Berücksichtigung des Kundennutzens. Zeitschrift für Betriebswirtschaft, 65(8), 835–855.Google Scholar
  8. Green, P. E., & Kieger, A. M. (1987). A simple heuristic for selecting ‘good’ products in conjoint analysis. Advances in Management Science, 5, 131–153.Google Scholar
  9. Green, P. E., & Kieger, A. M. (1997). Using conjoint analysis to view competitive interaction through the customer’s eyes. In G. S. Day & D. J. Reibstein (Eds.), Wharton on dynamic competitive strategy (pp. 343–368). New York: Wiley.Google Scholar
  10. Green, P. E., & Rao, V. R. (1971). Conjoint measurement for quantifying judgmental data. Journal of Marketing Research, 8, 355–363.CrossRefGoogle Scholar
  11. Gutsche, J. (1995). Produktpräferenzanalyse. Ein modelltheoretisches und methodisches Konzept zur Marktsimulation mittels Präferenzerfassungsmodellen. Berlin: Duncker & HumblotGoogle Scholar
  12. Henard, D. H., & Szymanski, D. M. (2001). Why some new products are more successful than others. Journal of Marketing Research, 38(3), 362–375.Google Scholar
  13. Hoch, S. J., & Loewenstein, G. F. (1991). Time-inconsistent preferences and consumer self-control. Journal of Consumer Research, 17, 492–507.CrossRefGoogle Scholar
  14. Sorescu, A. B., & Spanjol, J. (2008). Innovation’s effect on firm value and risk: Insights from consumer packaged goods. Journal of Marketing, 72, 114–132.CrossRefGoogle Scholar
  15. Steiner, W. J. (2010). A Stackelberg-Nash model for new product design. OR Spectrum, 32, 21–48.CrossRefzbMATHGoogle Scholar
  16. Steiner, W. J., & Baumgartner, B. (2009). Spieltheoretische ansätze in der conjointanalyse. In D. Baier & M. Brusch (Eds.), Conjointanalyse: Methoden-Anwendungen-Praxisbeispiele, 2009 (pp. 183–198). Heidelberg: Springer.CrossRefGoogle Scholar
  17. Steiner, W. J., & Hruschka, H. (2000). Conjointanalyse-basierte Produkt(linien)gestaltung unter Berücksichtigung von Konkurrenzreaktionen. OR Spektrum, 22, 71–95.CrossRefzbMATHGoogle Scholar
  18. Teichert, T., & Shehu, E. (2010). Investigating research streams of conjoint analysis: A bibliometric study. BuR - Business Research, 3, 49–68.CrossRefGoogle Scholar
  19. Urban, G. L., Weinberg, B. D., & Hauser, J. R. (1996). Premarket forecasting of really-new products. Journal of Marketing, 60, 47–60.CrossRefGoogle Scholar
  20. Wittink, D. R., Vriens, M., & Burhenne, W. (1994). Commercial use of conjoint analysis in Europe: Results and critical reflections. International Journal of Research in Marketing, 11, 41–52.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Business Administration and EconomicsBrandenburg University of Technology CottbusCottbusGermany

Personalised recommendations