A Statistical Software Package for Image Data Analysis in Marketing

  • Thomas BöttcherEmail author
  • Daniel Baier
  • Robert Naundorf
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


The strongly growing number of available images reveals a great opportunity for a new age in the field of statistical analysis. Today, several thousand digital images are taken and published every day but not used for marketing purposes. Common statistical tools like SPSS, SAS, R, MATLAB, or RapidMiner still provide none or insufficient image processing packages. In this paper we introduce IMADAC, a statistical software in expansion of Naundorf et al. (Computer science reports. Institute of Computer Science, Brandenburg University of Technology, Cottbus, 2012) and Zellhöfer et al. (Proceedings of the 2nd ACM international conference on multimedia retrieval, ICMR ’12, pp. 59–60, 2012). IMADAC, designed for experts as well as users without image processing background, combines statistical analysis on both, common statistical data (e.g., age or gender) and image processing methods. This paper demonstrates the usage of low level image features for statistical purposes (e.g., clustering or multi-dimensional scaling). To improve marketing analysis results, we further show how to combine image features with other statistical data and how it can be done in a graphical user interface (GUI).


Latent Class Analysis Image Feature Extraction Feature File Marketing Purpose Visual Image Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Acock, A. (2005). SAS, Stata, SPSS: A comparison. Journal of Marriage and Family, 67(4), 1093–1095.CrossRefGoogle Scholar
  2. Baier, D., & Daniel, I. (2010). Image clustering for marketing purposes. In Proceedings of the 34th Annual Conference of the Gesellschaft für Klassifikation (pp. 487–494), Karlsruhe. Heidelberg/Berlin: Springer. ISBN 978-3-642-24465-0.Google Scholar
  3. Baier, D., Daniel, I., Frost, S., & Naundorf, R. (2012). Image data analysis and classification in marketing. Advances in Data Analysis and Classification, 6(4), 253–276.CrossRefzbMATHMathSciNetGoogle Scholar
  4. Balko, S., & Schmitt, I. (2012). Signature indexing and self-refinement in metric spaces. In Computer science reports (Vol. 6). Cottbus: Institute of Computer Science, Brandenburg University of Technology.Google Scholar
  5. Böttcher, T., Zellhöfer, D., & Schmitt, I. (2013). BTU DBIS’ personal photo retrieval runs at ImageCLEF 2013. In CLEF 2013 Labs and Workshop, Notebook Papers (pp. 23–26), September 2013, Valencia, Spain.Google Scholar
  6. Burget, R., Karásek, J., Smékal, Z., Uher, V., & Dostál, O. (2010). Rapidminer image processing extension: A platform for collaborative research. In International Conference on Communications and Signal Processing, Baden, Vienna.Google Scholar
  7. Chatzichristofis, S. A., & Boutalis, Y. S. (2008b). FCTH: Fuzzy color and texture histogram - A low level feature for accurate image retrieval. In Proceedings of the 2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services (pp. 191–196), WIAMIS ’08. Washington, DC: IEEE Computer Society. ISBN 978-0-7695-3130-4.Google Scholar
  8. Chatzichristofis, S. A., Boutalis, Y. S., Gasteratos, A., Vincze, M., & Tsotsos, J. K. (2008a). CEDD: Color and edge directivity descriptor - A compact descriptor for image indexing and retrieval. In Proceedings of the 6th International Conference on Computer Vision Systems (pp. 312–322). ISBN 978-3-540-79546-9.Google Scholar
  9. Cieplinski, L., Jeannin, S., Ohm, J.R., Kim, M., Pickering, M., Yamada, A., (2001). MPEG-7 Visual XM version 8.1. Pisa, ItalyGoogle Scholar
  10. Daniel, I., & Baier, D. (2013). Lifestyle segmentation based on contents of preferred images versus ratings of items. In Studies in Classification, Data Analysis, and Knowledge Organization, 46, (vol. 4, pp. 439–448).Google Scholar
  11. Datta, R., Joshi, D., Li, J., & Wang, J. Z. (2008). Image retrieval: Ideas, influences and trends of the new age. ACM Computational Survey, 40(2). Article 5, 1–60.Google Scholar
  12. Huang, J., Kumar, R. S., Mitra, M., Zhu, W. J., & Zabih, R. (1997). Image indexing using color correlograms. In Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR ’97) (pp. 762–768). Washington, DC: IEEE Computer Society. ISBN 0-8186-7822-4.CrossRefGoogle Scholar
  13. IBM Corporation. (2013). IBM SPSS statistics 20 core system user’s guide. Accessed 24 Sept 2013.
  14. KDNuggets. (2011). KDNuggets polls. Accessed 24 Sept 2013.
  15. Lew, M. S., Sebe, N., Djeraba, C. & Jain, R. (2006). Content-based multimedia information retrieval: State of the art and challenges. ACM Transactions on Multimedia Computing, Communications, and Applications, 2(1), 1–19.CrossRefGoogle Scholar
  16. Maccallum, R. (1983). A comparison of factor analysis programs in SPSS, BMDP, and SAS. Psychometrika, 48(2), 223–231.CrossRefzbMATHGoogle Scholar
  17. Manjunath, B., Salembier, P., & Sikora, T. (2002). Introduction to MPEG-7: Multimedia content description interface. New York, NY, USA: Wiley. ISBN 0-4714-8678-7.Google Scholar
  18. MathWorks Inc. (2013). Image processing toolbox - User’s guide 2013b. Accessed 24 Sept 2013.
  19. Naundorf, R., Baier, D., & Schmitt, I. (2012). Statistical software for clustering images. In Computer science reports. Cottbus: Institute of Computer Science, Brandenburg University of Technology. ISSN:1473–7969.Google Scholar
  20. Ohm, J. R., Cieplinski, L., Kim, H. J., Krishnamachari, S., Manjunath, B. S., Messing, D. S., et al. (2002). Color descriptors: Introduction to MPEG-7 – Multimedia content description interface (pp. 187–212). New York: Wiley.Google Scholar
  21. Rexer, K. (2010). Fourth annual rexer analytics data miner survey. In Predictive Analytics World, Washington, DC, Oct 2010.Google Scholar
  22. SAS Institute Inc. (2013). SAS 9.3 language reference. Accessed 24 Sept 2013.
  23. Stehling, O. R., Nascimento, A. M., & Falcao, X. A. (2002). A compact and effcient image retrieval approach based on border/interior pixel classification. In Proceedings of the 11th International Conference on Information and Knowledge Management (pp. 102–109), CIKM ’02.Google Scholar
  24. Tamura, H., Mori, S., & Yamawaki, T. (1978). Texture features corresponding to visual perception. IEEE Transactions on System, Man and Cybernatic, 8(6), 460–472.CrossRefGoogle Scholar
  25. Venables, W. N., Smith, D. M., & R Development Core Team. (2011). An introduction to R: Notes on R, A programming environment for data analysis and graphics. Vienna: Department of Statistics and Mathematics, Vienna University of Economics and Business.Google Scholar
  26. Wahbeh, A. H., Al-Radaideh, Q. A., Al-Kabi, M. N., & Al-Shawakfa, E. M. (2011). A comparison study between data mining tools over some classification methods. International Journal of Advanced Computer Science and Applications - IJACSA, 2(8), 18–26.Google Scholar
  27. Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244.CrossRefMathSciNetGoogle Scholar
  28. Zellhöfer, D., Bertram, M., Böttcher, T., Schmidt, C., Tillmann, C., & Schmitt, I. (2012). PythiaSearch – A multiple search strategy-supportive multimedia retrieval system. In Proceedings of the 2nd ACM International Conference on Multimedia Retrieval, ICMR ’12 (pp. 59–60). ISBN 978-1-4503-1329-2.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Thomas Böttcher
    • 1
    Email author
  • Daniel Baier
    • 1
  • Robert Naundorf
    • 1
  1. 1.Institute of Business Administration and EconomicsBrandenburg University of Technology Cottbus-SenftenbergCottbusGermany

Personalised recommendations