Polarization of Tumor Milieu: Therapeutic Implications

  • Stanisław Szala
  • Magdalena Jarosz-Biej
  • Tomasz Cichoń
  • Ryszard Smolarczyk
  • Aleksander Sochanik


During neoplastic progression, cancer cells recruit inflammatory cells (monocytes, neutrophils, mast, and dendritic cells, etc.), which become “educated” under the influence of factors released by cancer cells (mainly cytokines). As a consequence, the former lose their ability to present antigens. Instead, they become cells involved in remodeling of extracellular matrix and stimulate the formation of blood vessels (angiogenesis). Proangiogenic factors released by inflammatory cells act as immunosuppressants and the tumor milieu becomes proangiogenic and immunosuppressive. Latest studies have demonstrated the possibility of reverting such proangiogenic/immunosuppressive microenvironment which inhibits tumor growth. Reverted tumor microenvironment becomes anti-angiogenic and immunostimulatory. Reversal of tumor microenvironment is especially feasible with combinations of anti-angiogenic and immunomodulatory factors. For instance, combinations of VEGF, VEGFR2, or TGF-β activity inhibitors with immunostimulants such as anticancer vaccines, CpG sequences, or IL-12 were effective in inhibiting growth of experimental tumors. In our hands, a DNA vaccine directed against endoglin (CD105), a tumor vascular endothelial cell-surface protein, when combined with IL-12, led to a ca. 30 % cure rate in mice bearing experimental melanoma tumors. It appears that attempts to therapeutically revert tumor microenvironment might merit further consideration.


Tumor microenvironment Inflammatory cells Microenvironment reversal Anticancer therapy 



This study was supported by Grants No. N N401 587540 and UMO-2013/11/B/NZ4/04468 from the Ministry of Science and Higher Education (Poland).


  1. 1.
    Merlo LM, Pepper JW, Reid BJ, Maley CC. Cancer as an evolutionary and ecological. Proc Nat Rev Cancer. 2006;6(12):924–35.CrossRefGoogle Scholar
  2. 2.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedCrossRefGoogle Scholar
  3. 3.
    Ruan K, Song G, Ouyang G. Role of hypoxia in the hallmarks of human cancer. J Cell Biochem. 2009;107(6):1053–62.PubMedCrossRefGoogle Scholar
  4. 4.
    Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44.PubMedCrossRefGoogle Scholar
  5. 5.
    Swartz MA, Iida N, Roberts EW, Sangaletti S, Wong MH, Yull FE, et al. Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res. 2012;72(10):2473–80.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Ruffell B, Affara NI, Coussens LM. Differential macrophage programming in the tumor microenvironment. Trends Immunol. 2012;33(3):119–26.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Chow MT, Möller A, Smyth MJ. Inflammation and immune surveillance in cancer. Semin Cancer Biol. 2012;22(1):23–32.Google Scholar
  8. 8.
    Allavena P, Germano G, Marchesi F, Mantovani A. Chemokines in cancer related inflammation. Exp Cell Res. 2011;317(5):664–73.PubMedCrossRefGoogle Scholar
  9. 9.
    Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009;86(5):1065–73.PubMedCrossRefGoogle Scholar
  10. 10.
    Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787–95.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Van Beijnum J, Nowak-Sliwinska P, Van Den Boezem E, Hautvast P, Buurman W, Griffioen A. Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1. Oncogene. 2013;32(3):363–74.PubMedCrossRefGoogle Scholar
  12. 12.
    Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11(10):889–96.PubMedCrossRefGoogle Scholar
  13. 13.
    Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;229(2):176–85.PubMedCrossRefGoogle Scholar
  14. 14.
    Hao N-B, Lü M-H, Fan Y-H, Cao Y-L, Zhang Z-R, Yang S-M. Macrophages in tumor microenvironments and the progression of tumors. J Immunol Res. 2012;2012:948098.Google Scholar
  15. 15.
    Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol. 2011;11(11):750–61.PubMedCrossRefGoogle Scholar
  16. 16.
    Mantovani A, Savino B, Locati M, Zammataro L, Allavena P, Bonecchi R. The chemokine system in cancer biology and therapy. Cytokine Growth Fact Rev. 2010;21(1):27–39.CrossRefGoogle Scholar
  17. 17.
    Qian B-Z, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51.PubMedCrossRefGoogle Scholar
  18. 18.
    Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S, et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood. 2010;116(5):829–40.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Lin EY, Li J-F, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 2006;66(23):11238–46.PubMedCrossRefGoogle Scholar
  20. 20.
    Szala S, Mitrus I, Sochanik A. Can inhibition of angiogenesis and stimulation of immune response be combined into a more effective antitumor therapy? Cancer Immunol Immunother. 2010;59(10):1449–55.PubMedCrossRefGoogle Scholar
  21. 21.
    Tartour E, Pere H, Maillere B, Terme M, Merillon N, Taieb J, et al. Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev. 2011;30(1):83–95.PubMedCrossRefGoogle Scholar
  22. 22.
    Facciabene A, Motz GT, Coukos G. T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res. 2012;72(9):2162–71.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Terme M, Colussi O, Marcheteau E, Tanchot C, Tartour E, Taieb J. Modulation of immunity by antiangiogenic molecules in cancer. J Immunol Res. 2012;2012:492920.Google Scholar
  24. 24.
    Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 1996;2(10):1096–103.PubMedCrossRefGoogle Scholar
  25. 25.
    Dikov MM, Ohm JE, Ray N, Tchekneva EE, Burlison J, Moghanaki D, et al. Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. J Immunol. 2005;174(1):215–22.PubMedCrossRefGoogle Scholar
  26. 26.
    Benkhoucha M, Santiago-Raber M-L, Schneiter G, Chofflon M, Funakoshi H, Nakamura T, et al. Hepatocyte growth factor inhibits CNS autoimmunity by inducing tolerogenic dendritic cells and CD25+ Foxp3+ regulatory T cells. Proc Natl Acad Sci. 2010;107(14):6424–9.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limón P. The polarization of immune cells in the tumour environment by TGFβ. Nat Rev Immunol. 2010;10(8):554–67.PubMedCrossRefGoogle Scholar
  28. 28.
    Allavena P, Sica A, Garlanda C, Mantovani A. The Yin–Yang of tumor–associated macrophages in neoplastic progression and immune surveillance. Immunol Rev. 2008;222(1):155–61.Google Scholar
  29. 29.
    Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell. 2009;16(3):183–94.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Renukaradhya GJ, Khan MA, Vieira M, Du W, Gervay-Hague J, Brutkiewicz RR. Type I NKT cells protect (and type II NKT cells suppress) the host’s innate antitumor immune response to a B-cell lymphoma. Blood. 2008;111(12):5637–45.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Shurin GV, Ouellette CE, Shurin MR. Regulatory dendritic cells in the tumor immunoenvironment. Cancer Immunol Immunother. 2012;61(2):223–30.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Dalton DK, Noelle RJ. The roles of mast cells in anticancer immunity. Cancer Immunol Immunother. 2012;61(9):1511–20.PubMedCrossRefGoogle Scholar
  33. 33.
    Erdman SE, Sohn JJ, Rao VP, Nambiar PR, Ge Z, Fox JG, et al. CD4+ CD25+ regulatory lymphocytes induce regression of intestinal tumors in ApcMin/+mice. Cancer Res. 2005;65(10):3998–4004.PubMedCrossRefGoogle Scholar
  34. 34.
    Ebata K, Shimizu Y, Nakayama Y, Minemura M, Murakami J, Kato T, et al. Immature NK cells suppress dendritic cell functions during the development of leukemia in a mouse model. J Immunol. 2006;176(7):4113–24.PubMedCrossRefGoogle Scholar
  35. 35.
    Waldhauer I, Steinle A. NK cells and cancer immunosurveillance. Oncogene. 2008;27(45):5932–43.PubMedCrossRefGoogle Scholar
  36. 36.
    Ostrand-Rosenberg S. Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin Genet Dev. 2008;18(1):11–8.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Noonan DM, Barbaro ADL, Vannini N, Mortara L, Albini A. Inflammation, inflammatory cells and angiogenesis: decisions and indecisions. Cancer Metastasis Rev. 2008;27(1):31–40.PubMedCrossRefGoogle Scholar
  38. 38.
    Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res. 2005;65(8):3437–46.PubMedGoogle Scholar
  40. 40.
    Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 2011;331(6024):1612–6.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, et al. “Re-educating” tumor-associated macrophages by targeting NF-κB. J Exp Med. 2008;205(6):1261–8.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Shime H, Matsumoto M, Oshiumi H, Tanaka S, Nakane A, Iwakura Y, et al. Toll-like receptor 3 signaling converts tumor-supporting myeloid cells to tumoricidal effectors. Proc Nat Acad Sci. 2012;109(6):2066–71.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Shirota Y, Shirota H, Klinman DM. Intratumoral injection of CpG oligonucleotides induces the differentiation and reduces the immunosuppressive activity of myeloid-derived suppressor cells. J Immunol. 2012;188(4):1592–9.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Rolny C, Mazzone M, Tugues S, Laoui D, Johansson I, Coulon C, et al. HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell. 2011;19(1):31–44.PubMedCrossRefGoogle Scholar
  45. 45.
    Li B, Lalani AS, Harding TC, Luan B, Koprivnikar K, Tu GH, et al. Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF–secreting cancer immunotherapy. Clin Cancer Res. 2006;12(22):6808–16.PubMedCrossRefGoogle Scholar
  46. 46.
    Manning EA, Ullman JG, Leatherman JM, Asquith JM, Hansen TR, Armstrong TD, et al. A vascular endothelial growth factor receptor-2 inhibitor enhances antitumor immunity through an immune-based mechanism. Clin Cancer Res. 2007;13(13):3951–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Ozao-Choy J, Ma G, Kao J, Wang GX, Meseck M, Sung M, et al. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res. 2009;69(6):2514–22.PubMedCrossRefGoogle Scholar
  48. 48.
    Ueda R, Fujita M, Zhu X, Sasaki K, Kastenhuber ER, Kohanbash G, et al. Systemic inhibition of transforming growth factor-β in glioma-bearing mice improves the therapeutic efficacy of glioma-associated antigen peptide vaccines. Clin Cancer Res. 2009;15(21):6551–9.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Terabe M, Ambrosino E, Takaku S, O’Konek JJ, Venzon D, Lonning S, et al. Synergistic enhancement of CD8+ T cell–mediated tumor vaccine efficacy by an anti–transforming growth factor-β monoclonal antibody. Clin Cancer Res. 2009;15(21):6560–9.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Takaku S, Terabe M, Ambrosino E, Peng J, Lonning S, McPherson JM, et al. Blockade of TGF–β enhances tumor vaccine efficacy mediated by CD8+ T cells. Int J Cancer. 2010;126(7):1666–74.Google Scholar
  51. 51.
    Jarosz M, Jazowiecka-Rakus J, Cichoń T, Głowala-Kosińska M, Smolarczyk R, Smagur A, et al. Therapeutic antitumor potential of endoglin-based DNA vaccine combined with immunomodulatory agents. Gene Ther. 2013;20(3):262–73.PubMedCrossRefGoogle Scholar
  52. 52.
    Stout RD, Watkins SK, Suttles J. Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages. J Leukoc Biol. 2009;86(5):1105–9.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Stanisław Szala
    • 1
  • Magdalena Jarosz-Biej
    • 1
  • Tomasz Cichoń
    • 1
  • Ryszard Smolarczyk
    • 1
  • Aleksander Sochanik
    • 1
  1. 1.Center for Translational Research and Molecular Biology of CancerMaria Skłodowska-Curie Memorial Cancer Center and Institute of OncologyGliwicePoland

Personalised recommendations