Skip to main content

Hematopoietic Stem Cell Transplantation and Lymphodepletion for the Treatment of Cancer

  • Chapter
  • First Online:
Cancer Immunology

Abstract

Myeloablative conditioning followed by either an autologous or allogeneic hematopoietic stem cell transplantation (HSCT) can be an effective treatment for hematologic malignancies and, more recently, has shown efficacy for the treatment of solid tumors. Destruction of hematopoietic cells through myeloablative or non-myeloablative “conditioning” serves to eliminate or reduce numbers of malignant cells, create “space” in the hematopoietic compartment for the expansion of transplanted hematopoietic cells, and provide a hematopoietic environment that is conducive to the proliferation of antitumor immune cells. Discussed in this chapter are treatments used to deplete hematopoietic cells and/or induce lymphodepletion, how these treatments are used as preconditioning for autologous and allogeneic HSCT, and how lymphodepletion augments an antitumor immune response during hematopoietic cell reconstitution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas ED, Lochte Jr HL, Cannon JH, Sahler OD, Ferrebee JW. Supralethal whole body irradiation and isologous marrow transplantation in man. J Clin Invest. 1959;38:1709–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Appelbaum FR. Retrospective. E. Donnall Thomas (1920–2012). Science. 2012;338(6111):1163.

    Article  PubMed  Google Scholar 

  3. Gorin NC. Autologous stem cell transplantation in acute myelocytic leukemia. Blood. 1998;92(4):1073–90.

    CAS  PubMed  Google Scholar 

  4. Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med. 2006;354(17):1813–26.

    Article  CAS  PubMed  Google Scholar 

  5. Blume KG, Beutler E, Bross KJ, Chillar RK, Ellington OB, Fahey JL, et al. Bone-marrow ablation and allogeneic marrow transplantation in acute leukemia. N Engl J Med. 1980;302(19):1041–6.

    Article  CAS  PubMed  Google Scholar 

  6. Speck B, Bortin MM, Champlin R, Goldman JM, Herzig RH, McGlave PB, et al. Allogeneic bone-marrow transplantation for chronic myelogenous leukaemia. Lancet. 1984;1(8378):665–8.

    Article  CAS  PubMed  Google Scholar 

  7. Thomas ED, Buckner CD, Banaji M, Clift RA, Fefer A, Flournoy N, et al. One hundred patients with acute leukemia treated by chemotherapy, total body irradiation, and allogeneic marrow transplantation. Blood. 1977;49(4):511–33.

    CAS  PubMed  Google Scholar 

  8. Kennedy MJ, Beveridge RA, Rowley SD, Gordon GB, Abeloff MD, Davidson NE. High-dose chemotherapy with reinfusion of purged autologous bone marrow following dose-intense induction as initial therapy for metastatic breast cancer. J Natl Cancer Inst. 1991;83(13):920–6.

    Article  CAS  PubMed  Google Scholar 

  9. Spitzer G, Velasquez W, Dunphy FR, Spencer V. Autologous bone marrow transplantation in solid tumors. Curr Opin Oncol. 1992;4(2):272–8.

    Article  CAS  PubMed  Google Scholar 

  10. Fish JD, Grupp SA. Stem cell transplantation for neuroblastoma. Bone Marrow Transplant. 2008;41(2):159–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Gratwohl A, Baldomero H, Demirer T, Rosti G, Dini G, Ladenstein R, et al. Hematopoetic stem cell transplantation for solid tumors in Europe. Ann Oncol. 2004;15(4):653–60.

    Article  CAS  PubMed  Google Scholar 

  12. Bensinger WI, Martin PJ, Storer B, Clift R, Forman SJ, Negrin R, et al. Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. N Engl J Med. 2001;344(3):175–81.

    Article  CAS  PubMed  Google Scholar 

  13. Pavletic ZS, Bishop MR, Tarantolo SR, Martin-Algarra S, Bierman PJ, Vose JM, et al. Hematopoietic recovery after allogeneic blood stem-cell transplantation compared with bone marrow transplantation in patients with hematologic malignancies. J Clin Oncol. 1997;15(4):1608–16.

    CAS  PubMed  Google Scholar 

  14. Korbling M, Anderlini P. Peripheral blood stem cell versus bone marrow allotransplantation: does the source of hematopoietic stem cells matter? Blood. 2001;98(10):2900–8.

    Article  CAS  PubMed  Google Scholar 

  15. Gluckman E, Rocha V, Boyer-Chammard A, Locatelli F, Arcese W, Pasquini R, et al. Outcome of cord-blood transplantation from related and unrelated donors. Eurocord transplant group and the European blood and marrow transplantation group. N Engl J Med. 1997;337(6):373–81.

    Article  CAS  PubMed  Google Scholar 

  16. Laughlin MJ, Eapen M, Rubinstein P, Wagner JE, Zhang MJ, Champlin RE, et al. Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N Engl J Med. 2004;351(22):2265–75.

    Article  CAS  PubMed  Google Scholar 

  17. Rocha V, Wagner Jr JE, Sobocinski KA, Klein JP, Zhang MJ, Horowitz MM, et al. Graft-versus-host disease in children who have received a cord-blood or bone marrow transplant from an HLA-identical sibling. Eurocord and international bone marrow transplant registry working committee on alternative donor and stem cell sources. N Engl J Med. 2000;342(25):1846–54.

    Article  CAS  PubMed  Google Scholar 

  18. Rubinstein P, Carrier C, Scaradavou A, Kurtzberg J, Adamson J, Migliaccio AR, et al. Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med. 1998;339(22):1565–77.

    Article  CAS  PubMed  Google Scholar 

  19. Kurtzberg J, Laughlin M, Graham ML, Smith C, Olson JF, Halperin EC, et al. Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N Engl J Med. 1996;335(3):157–66.

    Article  CAS  PubMed  Google Scholar 

  20. Wagner JE, Rosenthal J, Sweetman R, Shu XO, Davies SM, Ramsay NK, et al. Successful transplantation of HLA-matched and HLA-mismatched umbilical cord blood from unrelated donors: analysis of engraftment and acute graft-versus-host disease. Blood. 1996;88(3):795–802.

    CAS  PubMed  Google Scholar 

  21. Grewal SS, Barker JN, Davies SM, Wagner JE. Unrelated donor hematopoietic cell transplantation: marrow or umbilical cord blood? Blood. 2003;101(11):4233–44.

    Article  CAS  PubMed  Google Scholar 

  22. Singh K, Srivastava A, Mathur N, Kumar S, Kumar L, Mukhopadhyay A, et al. Evaluation of four methods for processing human cord blood and subsequent study of the expansion of progenitor stem cells isolated using the best method. Cytotherapy. 2009;11(6):768–77.

    Article  CAS  PubMed  Google Scholar 

  23. Delaney C, Heimfeld S, Brashem-Stein C, Voorhies H, Manger RL, Bernstein ID. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med. 2010;16(2):232–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Demange E, Kassim Y, Petit C, Buquet C, Dulong V, Cerf DL, et al. Survival of cord blood haematopoietic stem cells in a hyaluronan hydrogel for ex vivo biomimicry. J Tissue Eng Regen Med. 2013;7(11):901–10.

    Article  CAS  PubMed  Google Scholar 

  25. Fowler DH. Shared biology of GVHD and GVT effects: potential methods of separation. Crit Rev Oncol Hematol. 2006;57(3):225–44.

    Article  PubMed  Google Scholar 

  26. Ferrara JL, Reddy P. Pathophysiology of graft-versus-host disease. Semin Hematol. 2006;43(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  27. Bhatia S, Francisco L, Carter A, Sun CL, Baker KS, Gurney JG, et al. Late mortality after allogeneic hematopoietic cell transplantation and functional status of long-term survivors: report from the bone marrow transplant survivor study. Blood. 2007;110(10):3784–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Duell T, van Lint MT, Ljungman P, Tichelli A, Socie G, Apperley JF, et al. Health and functional status of long-term survivors of bone marrow transplantation. EBMT working party on late effects and EULEP study group on late effects. European group for blood and marrow transplantation. Ann Intern Med. 1997;126(3):184–92.

    Article  CAS  PubMed  Google Scholar 

  29. Martin PJ, Counts Jr GW, Appelbaum FR, Lee SJ, Sanders JE, Deeg HJ, et al. Life expectancy in patients surviving more than 5 years after hematopoietic cell transplantation. J Clin Oncol. 2010;28(6):1011–6.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Socie G, Stone JV, Wingard JR, Weisdorf D, Henslee-Downey PJ, Bredeson C, et al. Long-term survival and late deaths after allogeneic bone marrow transplantation. Late effects working committee of the international bone marrow transplant registry. N Engl J Med. 1999;341(1):14–21.

    Article  CAS  PubMed  Google Scholar 

  31. Hess AD. Reconstitution of self-tolerance after hematopoietic stem cell transplantation. Immunol Res. 2010;47(1–3):143–52.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Truitt RL, Johnson BD. Principles of graft-vs.-leukemia reactivity. Biol Blood Marrow Transplant. 1995;1(2):61–8.

    CAS  PubMed  Google Scholar 

  33. Marmont AM, Horowitz MM, Gale RP, Sobocinski K, Ash RC, van Bekkum DW, et al. T-cell depletion of HLA-identical transplants in leukemia. Blood. 1991;78(8):2120–30.

    CAS  PubMed  Google Scholar 

  34. Truitt RL, Atasoylu AA. Contribution of CD4+ and CD8+ T cells to graft-versus-host disease and graft-versus-leukemia reactivity after transplantation of MHC-compatible bone marrow. Bone Marrow Transplant. 1991;8(1):51–8.

    CAS  PubMed  Google Scholar 

  35. Weiden PL, Flournoy N, Thomas ED, Prentice R, Fefer A, Buckner CD, et al. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N Engl J Med. 1979;300(19):1068–73.

    Article  CAS  PubMed  Google Scholar 

  36. Kotsiou E, Davies JK. New ways to separate graft-versus-host disease and graft-versus-tumour effects after allogeneic haematopoietic stem cell transplantation. Br J Haematol. 2013;160(2):133–45.

    Article  CAS  PubMed  Google Scholar 

  37. Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990;75(3):555–62.

    CAS  PubMed  Google Scholar 

  38. Ringden O, Labopin M, Gorin NC, Schmitz N, Schaefer UW, Prentice HG, et al. Is there a graft-versus-leukaemia effect in the absence of graft-versus-host disease in patients undergoing bone marrow transplantation for acute leukaemia? Br J Haematol. 2000;111(4):1130–7.

    Article  CAS  PubMed  Google Scholar 

  39. Hallett WH, Murphy WJ. Natural killer cells: biology and clinical use in cancer therapy. Cell Mol Immunol. 2004;1(1):12–21.

    CAS  PubMed  Google Scholar 

  40. Strober S, Slavin S, Gottlieb M, Zan-Bar I, King DP, Hoppe RT, et al. Allograft tolerance after total lymphoid irradiation (TLI). Immunol Rev. 1979;46:87–112.

    Article  CAS  PubMed  Google Scholar 

  41. Strober S, Spitzer TR, Lowsky R, Sykes M. Translational studies in hematopoietic cell transplantation: treatment of hematologic malignancies as a stepping stone to tolerance induction. Semin Immunol. 2011;23(4):273–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Lan F, Zeng D, Higuchi M, Huie P, Higgins JP, Strober S. Predominance of NK1.1 + TCR alpha beta + or DX5 + TCR alpha beta + T cells in mice conditioned with fractionated lymphoid irradiation protects against graft-versus-host disease: “natural suppressor” cells. J Immunol. 2001;167(4):2087–96.

    Article  CAS  PubMed  Google Scholar 

  43. Antony PA, Piccirillo CA, Akpinarli A, Finkelstein SE, Speiss PJ, Surman DR, et al. CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol. 2005;174(5):2591–601.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol. 2005;23(10):2346–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med. 2005;202(7):907–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Ma J, Urba WJ, Si L, Wang Y, Fox BA, Hu HM. Anti-tumor T cell response and protective immunity in mice that received sublethal irradiation and immune reconstitution. Eur J Immunol. 2003;33(8):2123–32.

    Article  CAS  PubMed  Google Scholar 

  47. Williams KM, Hakim FT, Gress RE. T cell immune reconstitution following lymphodepletion. Semin Immunol. 2007;19(5):318–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Klebanoff CA, Khong HT, Antony PA, Palmer DC, Restifo NP. Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol. 2005;26(2):111–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Mackall CL, Fleisher TA, Brown MR, Andrich MP, Chen CC, Feuerstein IM, et al. Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N Engl J Med. 1995;332(3):143–9.

    Article  CAS  PubMed  Google Scholar 

  50. Mackall CL, Granger L, Sheard MA, Cepeda R, Gress RE. T-cell regeneration after bone marrow transplantation: differential CD45 isoform expression on thymic-derived versus thymic-independent progeny. Blood. 1993;82(8):2585–94.

    CAS  PubMed  Google Scholar 

  51. Peschon JJ, Morrissey PJ, Grabstein KH, Ramsdell FJ, Maraskovsky E, Gliniak BC, et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med. 1994;180(5):1955–60.

    Article  CAS  PubMed  Google Scholar 

  52. Mackall CL, Fry TJ, Bare C, Morgan P, Galbraith A, Gress RE. IL-7 increases both thymic-dependent and thymic-independent T-cell regeneration after bone marrow transplantation. Blood. 2001;97(5):1491–7.

    Article  CAS  PubMed  Google Scholar 

  53. Alpdogan O, Hubbard VM, Smith OM, Patel N, Lu S, Goldberg GL, et al. Keratinocyte growth factor (KGF) is required for postnatal thymic regeneration. Blood. 2006;107(6):2453–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Storek J, Witherspoon RP, Storb R. T cell reconstitution after bone marrow transplantation into adult patients does not resemble T cell development in early life. Bone Marrow Transplant. 1995;16(3):413–25.

    CAS  PubMed  Google Scholar 

  55. Tchao NK, Turka LA. Lymphodepletion and homeostatic proliferation: implications for transplantation. Am J Transplant. 2012;12(5):1079–90.

    Article  CAS  PubMed  Google Scholar 

  56. Goldrath AW, Bogatzki LY, Bevan MJ. Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J Exp Med. 2000;192(4):557–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Kieper WC, Jameson SC. Homeostatic expansion and phenotypic conversion of naive T cells in response to self peptide/MHC ligands. Proc Natl Acad Sci U S A. 1999;96(23):13306–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Park JH, Yu Q, Erman B, Appelbaum JS, Montoya-Durango D, Grimes HL, et al. Suppression of IL7Ralpha transcription by IL-7 and other prosurvival cytokines: a novel mechanism for maximizing IL-7-dependent T cell survival. Immunity. 2004;21(2):289–302.

    Article  CAS  PubMed  Google Scholar 

  59. Schluns KS, Kieper WC, Jameson SC, Lefrancois L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol. 2000;1(5):426–32.

    Article  CAS  PubMed  Google Scholar 

  60. Tan JT, Dudl E, LeRoy E, Murray R, Sprent J, Weinberg KI, et al. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci U S A. 2001;98(15):8732–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M, et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med. 2000;191(5):771–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Zeng R, Spolski R, Finkelstein SE, Oh S, Kovanen PE, Hinrichs CS, et al. Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J Exp Med. 2005;201(1):139–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Boyman O, Krieg C, Homann D, Sprent J. Homeostatic maintenance of T cells and natural killer cells. Cell Mol Life Sci. 2012;69(10):1597–608.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Ernst B, Lee DS, Chang JM, Sprent J, Surh CD. The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity. 1999;11(2):173–81.

    Article  CAS  PubMed  Google Scholar 

  65. Goldrath AW, Bevan MJ. Low-affinity ligands for the TCR drive proliferation of mature CD8+ T cells in lymphopenic hosts. Immunity. 1999;11(2):183–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Kearl TJ, Jing W, Gershan JA, Johnson BD. Programmed death receptor-1/programmed death receptor ligand-1 blockade after transient lymphodepletion to treat myeloma. J Immunol. 2013;190(11):5620–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Jing W, Gershan JA, Johnson BD. Depletion of CD4 T cells enhances immunotherapy for neuroblastoma after syngeneic HSCT but compromises development of antitumor immune memory. Blood. 2009;113(18):4449–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Jing W, Yan X, Hallett WH, Gershan JA, Johnson BD. Depletion of CD25(+) T cells from hematopoietic stem cell grafts increases posttransplantation vaccine-induced immunity to neuroblastoma. Blood. 2011;117(25):6952–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Johnson BD, Jing W, Orentas RJ. CD25+ regulatory T cell inhibition enhances vaccine-induced immunity to neuroblastoma. J Immunother. 2007;30(2):203–14.

    Article  CAS  PubMed  Google Scholar 

  70. Neujahr DC, Chen C, Huang X, Markmann JF, Cobbold S, Waldmann H, et al. Accelerated memory cell homeostasis during T cell depletion and approaches to overcome it. J Immunol. 2006;176(8):4632–9.

    Article  CAS  PubMed  Google Scholar 

  71. Murali-Krishna K, Ahmed R. Cutting edge: naive T cells masquerading as memory cells. J Immunol. 2000;165(4):1733–7.

    Article  CAS  PubMed  Google Scholar 

  72. Prlic M, Blazar BR, Khoruts A, Zell T, Jameson SC. Homeostatic expansion occurs independently of costimulatory signals. J Immunol. 2001;167(10):5664–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryon D. Johnson PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barr, K.M., Gershan, J.A., Johnson, B.D. (2015). Hematopoietic Stem Cell Transplantation and Lymphodepletion for the Treatment of Cancer. In: Rezaei, N. (eds) Cancer Immunology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44946-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44946-2_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44945-5

  • Online ISBN: 978-3-662-44946-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics