Skip to main content

Prozessgrundlagen

  • Chapter
  • First Online:
Innovationsprozesse zyklenorientiert managen

Zusammenfassung

Die Prozessgrundlagen des Zyklenmanagements dienen dem grundlegenden Verständnis von Zyklen und ihren Charakteristika, und es wird gezeigt wie diese aus einer innovationsprozessübergreifenden Perspektive untersucht werden können.

Aus Sicht der Erfassung, Modellbildung und Analyse von Zyklen werden die strukturellen Abhängigkeiten zwischen und innerhalb prozess- und PSS-bezogener Zyklen untersucht. Eine übergreifende Perspektive auf das System dient der Identifikation und Analyse disziplinspezifischer und interdisziplinärer Abhängigkeiten sowie zur Abschätzung von änderungsauswirkungen. Für die weiterführende, innovationsprozessübergreifende Betrachtung werden strukturelle Analysen mit Arbeiten zur Analyse der Dynamik und Stabilität von Zyklen kombiniert sowie qualitatives Wissen integriert, um sowohl quantitative als auch qualitative Modellierungen und Analysen des dynamischen Verhaltens von Zyklen und ihres Bezugs zum Innovationsprozess zu ermöglichen. Aus Sicht der am Innovationsprozess beteiligten Teams wird deren Umgang mit Zyklen als auch die Kopplung zu teamexternen Zyklen (d. h. zeitgebende, dynamische und Veränderungen erfordernde Umfeldfaktoren) untersucht.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  • [Ande99] P. Anderson, “Complexity theory and organization science,” Organ Sci, vol. 10, no. 3, pp. 216–232, 1999.

    Google Scholar 

  • [BiLi11] W. Biedermann & U. Lindemann, “On the Applicability of Structural Criteria in Complexity Management,” in 18th International Conference on Engineering Design, 2011, vol. 4, pp. 21–32.

    Google Scholar 

  • [BiLi11] W. Biedermann & U. Lindemann, “Designing Consistent Structural Analysis Scenarios,” in 18th International Conference on Engineering Design, 2011, vol. 4, pp. 133–144.

    Google Scholar 

  • [BoSa06] J. Boardman & B. Sauser, “System of Systems - the meaning of of,” in 2006 IEEE/SMC International Conference on System of Systems Engineering, 2006, no. April, pp. 118–123.

    Google Scholar 

  • [Brow01] T. R. Browning, “Applying the Design Structure Matrix to System Decomposition and Integration Problems: a Review and New Directions,” IEEE Trans. Eng. Manag., vol. 48, no. 3, pp. 292–306, 2001.

    Google Scholar 

  • [BrPr01] S. Brusoni & A. Prencipe, “Unpacking the black box of modularity: technologies, products and organizations,” Ind. Corp. Chang., vol. 10, no. 1, pp. 179–205, 2001.

    Google Scholar 

  • [CaDo02] J. M. Carlson & J. Doyle, “Complexity and robustness,” Proc. Natl. Acad. Sci. U. S. A., vol. 99, no. 1, pp. 2538–2545, 2002.

    Google Scholar 

  • [DaBr04] M. Danilovic & T. R. Browning, “A Formal Approach for Domain Mapping Matrices (DMM) to Complement Design Structure Matrices (DSM),” in Proceedings of the 6th international design structure matrix (DSM) workshop, 2004.

    Google Scholar 

  • [Dijk07] A. Dijkstra, “Resilience engineering and safety management systems in aviation,” Second Symp. Resil. Eng. Netw., 2007.

    Google Scholar 

  • [EbLi10] K. Eben & U. Lindemann, “Structural analysis of requirements–interpretation of structural criterions,” in The 12th International dependency and structure modelling conference, 2010.

    Google Scholar 

  • [EpBr12] S. D. Eppinger & T. R. Browning, Design Structure Matrix Methods and Applications. Cambridge, USA: The MIT Press, 2012, p. 352.

    Google Scholar 

  • [FoSt98] D. N. Ford & J. D. Sterman, “Dynamic modeling of product development processes,” Syst. Dyn. Rev., vol. 14, no. 1, pp. 31–68, 1998.

    Google Scholar 

  • [FrSc05] E. Fricke & A. P. Schulz, “Design for changeability (DfC): Principles to enable changes in systems throughout their entire lifecycle,” Syst. Eng., vol. 8, no. 4, 2005.

    Google Scholar 

  • [FSLW07] S. Ferguson, A. Siddiqi, K. Lewis, & O. de Weck, “Flexible and reconfigurable systems: Nomenclature and review,” in ASME DETC and CIE Conferences, 2007.

    Google Scholar 

  • [HöWe07] K. Hölttä-Otto & O. de Weck, “Degree of modularity in engineering systems and products with technical and business constraints,” Concurr. Eng., vol. 15, no. 2, pp. 113–126, 2007.

    Google Scholar 

  • [JuFr07] R. Jugulum & D. D. Frey, “Toward a taxonomy of concept designs for improved robustness,” J. Eng. Des., vol. 18, no. 22, pp. 139–156, 2007.

    Google Scholar 

  • [KaKM13] D. Kasperek, A. Kohn, & M. Maurer, “Identifying Uncertainties within Structural Complexity Management,” in 19th International Conference on Engineering Design 2013 (ICED13), 2013.

    Google Scholar 

  • [KaMa13] D. Kasperek & M. Maurer, “Coupling Structural Complexity Management and System Dynamics to represent the dynamic behavior of product development processes,” in 2013 IEEE International Systems Conference (SysCon), 2013, pp. 414–419.

    Google Scholar 

  • [KHBL10] S. Kortler, B. Helms, M. Berkovich, U. Lindemann, K. Shea, J. M. Leimeister, & H. Krcmar, “Using MDM-Methods in Order to improve Managing of Iterations in Design Processes,” in 12th International DSM Conference, 2010, pp. 125–138.

    Google Scholar 

  • [Krei09] M. Kreimeyer, “A Structural Measurement System for Engineering Design Processes,” Dr. Hut, München, 2009.

    Google Scholar 

  • [Lang02] R. N. Langlois, “Modularity in technology and organization,” J. Econ. Behav. Organ., vol. 49, pp. 19–37, 2002.

    Google Scholar 

  • [LeGl08] J. M. Leimeister & C. Glauner, “Hybride Produkte – Einordnung und Herausforderungen für die Wirtschaftsinformatik,” WIRTSCHAFTSINFORMATIK, vol. 50, no. 3, pp. 248–251, Jul. 2008.

    Google Scholar 

  • [LiMB09] U. Lindemann, M. Maurer, & T. Braun, Structural Complexity Management - An Approach for the Field of Product Design. Berlin, Germany: Springer, 2009, p. 240.

    Google Scholar 

  • [LKMM13] C. Lichtenberg, D. Kasperek, S. Maisenbacher, & M. Maurer, “Strukturbasierte Modellierung und Bewertung von Entwicklungsprozessen von Produkt-Service Systemen,” in Tag des Systems Engineering, 2013, pp. 1–10.

    Google Scholar 

  • [MaMa13] M. Maurer & S. Maisenbacher, “Modeling and Analyzing Systems in Application,” in ICoRD’13, 2013, pp. 707–719.

    Google Scholar 

  • [Mart07] M. Marti, Complexity Management – Optimizing Product architecture of industrial Products, no. 3352. St. Gallen, Schweiz: Deutscher Universitäts-Verlag, 2007.

    Google Scholar 

  • [Maur07] M. Maurer, “Structural Awareness in Complex Product Design,” Dr. Hut, Munich, Germany, 2007.

    Google Scholar 

  • [Maur11] M. Maurer, “Systematic Knowledge Transfer Based on Knowledge Correlations,” in International Conference on Research into Design, 2011.

    Google Scholar 

  • [MaWe04] C. Magee & O. de Weck, Complex system classification. 2004.

    Google Scholar 

  • [MBCD09] M. Maurer, W. Biedermann, M. Cole, J. D’Avanzo, & D. Dickmanns, “Airport Security: From Single Threat Aspects to Valid Scenarios and Risk Assessment,” in 1st Annual Global Conference on Systems and Enterprises (GCSE), 2009.

    Google Scholar 

  • [MRRH07] H. McManus, M. Richards, A. M. Ross, & D. E. Hastings, “A Framework for Incorporating ‘ilities’ in Tradespace Studies,” in AIAA Space, 2007, pp. 1–14.

    Google Scholar 

  • [NeTM03] S. Negash, R. Terry, & I. Magid, “Quality and effectiveness in web-based customer support systems,” Inf. Manag., vol. 40, no. 8, pp. 757–768, 2003.

    Google Scholar 

  • [ReBe94] C. A. Reeves & D. A. Bednar, “Defining quality: alternatives and implications,” Acad. Manag. Rev., vol. 19, no. 3, pp. 419–445, 1994.

    Google Scholar 

  • [Rich01] K. A. Richardson, “On the Status of Natural Boundaries : A Complex Systems Perspective,” in Systems in management 7th annual ANZSYS conference, 2001, pp. 229–238.

    Google Scholar 

  • [RoRH08] A. M. Ross, D. H. Rhodes, & D. E. Hastings, “Defining changeability: Reconciling flexibility, adaptability, scalability, modifiability, and robustness for maintaining system lifecycle value,” Syst. Eng., vol. 11, no. 3, pp. 246–262, 2008.

    Google Scholar 

  • [RRSH09] M. G. Richards, A. M. Ross, N. B. Shah, & D. E. Hastings, “Metrics for evaluating survivability in dynamic multi-attribute tradespace exploration,” J. Spacecr. Rockets, vol. 46, no. 5, pp. 1049–1064, 2009.

    Google Scholar 

  • [SaMa96] R. Sanchez & J. T. Mahoney, “Modularity, Flexibility, and Knowledge Management in Product and Organization Design,” Strateg. Manag. J., vol. 17, pp. 63–76, 1996.

    Google Scholar 

  • [Stew81] D. V. Steward, “Design Structure System: A Method for Managing the Design of Complex Systems,” IEEE Trans. Eng. Manag., vol. EM-28, no. 3, pp. 71–74, 1981.

    Google Scholar 

  • [TaMc06] A. R. Tan & T. C. McAloone, “Characteristics of Strategies in Product/Service-System Development,” in International Design Conference – Design 2006, 2006.

    Google Scholar 

  • [WeRR12] O. de Weck, A. Roos, & D. Rhodes, Investigating Relationships and Semantic Sets amongst System Lifecycle Properties (Ilities). Massachusetts Institute of Technology, Cambridge: , 2012.

    Google Scholar 

  • [Žiha00] K. Žiha, “Redundancy and robustness of systems of events,” Probabilistic Eng. Mech., vol. 15, no. 4, pp. 347–357, 2000.

    Google Scholar 

  • AlZi13] A. Albers & C. Zingel, “Challenges of Model-Based Systems Engineering:A Study towards Unified Term Understandingand the State of Usage of SysML,” in 23rd CIRP Design Conference, 2013, pp. 83–92.

    Google Scholar 

  • [BKFV14] G. Barbieri, K. Kernschmidt, C. Fantuzzi, & B. Vogel-Heuser, “A SysML based design pattern for the high-level development of mechatronic systems to enhance re-usability,” in 19th IFAC World Congress, 2014.

    Google Scholar 

  • [BoCl10] M. Bone & R. Cloutier, “The Current State of Model Based Systems Engineering : Results from the OMG TM SysML Request for Information 2009,” in 8th Conference on Systems Engineering Research - CSER, 2010, pp. 225–232.

    Google Scholar 

  • [BSBF11] L. Bassi, C. Secchi, M. Bonfe, & C. Fantuzzi, “A SysML-based methodology for manufacturing machinery modeling and design,” IEEE/ASME Trans. Mechatronics, vol. 16, no. 6, pp. 1049–1062, 2011.

    Google Scholar 

  • [FeKV14] S. Feldmann, K. Kernschmidt, & B. Vogel-Heuser, “Combining a SysML-based modeling approach and semantic technologies for analyzing change influences in manufacturing plant models,” in 47th CIRP Conference on Manufacturing Systems (CMS 2014), April 28-30, 2014, Windsor, Ontario, Canada, 2014.

    Google Scholar 

  • [Inte07] International Council on Systems Engineering (INCOSE), “Systems Engineering Vision 2020,” Seattle, USA, 2007.

    Google Scholar 

  • [Inte13] International Electrotechnical Commission, “IEC 61131-3 ed 3.0 Programmable controllers - Part 3: Programming languages,” 2013.

    Google Scholar 

  • [Kass10] J. E. Kasser, “Seven systems engineering myths and the corresponding realities,” in Systems Engineering Test and Evaluation Conference, 2010, pp. 1–13.

    Google Scholar 

  • [KBCW14] K. Kernschmidt, F. G. H. Behncke, N. Chucholowski, M. C. Wickel, G. Bayrak, U. Lindemann, & B. Vogel-Heuser, “An integrated approach to analyze change-situations in the development of production systems,” 47th CIRP Conf. Manuf. Syst. (CMS 2014), April 28-30, 2014, Wind. Ontario, Canada, 2014.

    Google Scholar 

  • [KeVo13] K. Kernschmidt & B. Vogel-Heuser, “An interdisciplinary SysML based modeling approach for analyzing change influences in production plants to support the engineering,” in 9th annual IEEE International Conference on Automation Science and Engineering (IEEE CASE 2013), 2013.

    Google Scholar 

  • [KWMK13] K. Kernschmidt, T. Wolfenstetter, C. Münzberg, D. Kammerl, S. Goswami, U. Lindemann, H. Krcmar, & B. Vogel-Heuser, “Concept for an Integration-Framework to enable the crossdisciplinary Development of Product-Service Systems,” in Industrial Engineering and Engineering Management Conference (IEEM) 2013. Bangkok, Thailand., 2013.

    Google Scholar 

  • [LBKV12] F. Li, G. Bayrak, K. Kernschmidt, & B. Vogel-Heuser, “Specification of the Requirements to Support Information Technology-Cycles in the Machine and Plant Manufacturing Industry,” in 4th IFAC Symposium on Information Control Problems in Manufacturing, 2012, pp. 1077–1082.

    Google Scholar 

  • [LiLV14] F. Li, C. Legat, & B. Vogel-Heuser, “Extension of Electronic Device Description Language for analysing change impacts in modular automation in manufacturing plants,” J. Eng. Des., pp. 1–25, May 2014.

    Google Scholar 

  • [Mota13] B. Motamedian, “MBSE Applicability Analysis,” Int. J. Sci. Eng. Res., vol. 4, no. 2, pp. 1–7, 2013.

    Google Scholar 

  • [Omg11] OMG, “Object Management Group: OMG Unified Modeling Language (OMG UMLTM). Version 2.4.1, formal/2011-08-05,” 2011.

    Google Scholar 

  • [Omg12] OMG, “OMG Systems Modeling Language (OMG SysML TM) Version 1.3, formal/2012-06-01,” no. June, 2012.

    Google Scholar 

  • [Thra10] K. Thramboulidis, “The 3+1 SysML View-Model in Model Integrated Mechatronics,” J. Softw. Eng. Appl., vol. 03, no. 02, pp. 109–118, 2010.

    Google Scholar 

  • [Voge09] B. Vogel-Heuser, “Visionen für das Engineering der Automatisierungstechnik 2020,” Autom. Prax., vol. 51, no. 5, pp. 2–9, 2009.

    Google Scholar 

  • Föl13] O. Föllinger, „Regelungstechnik“, 11. Auflage, VDE-Verlag 2013

    Google Scholar 

  • [Lun10] J. Lunze, “Regelungstechnik 1 - Systemtheoretische Grundlagen, Analyse und Entwurf einschleifiger Regelungen,“ Springer, 2010

    Google Scholar 

  • [Zad65] L. Zadeh, „Fuzzy Sets,“ in Information and Control 8, 3, 2013, pp. 338–353.

    Google Scholar 

  • [Kro13] A. Kroll, „Computional Intelligence – Eine Einführung in Probleme, Methoden und technische Anwendungen,“ Oldenburg Wissenschaftsverlag, 2013

    Google Scholar 

  • [DiLo10] K.J. Diepold & B. Lohmann, “Transient Probabilistic Recurrent Fuzzy Systems,” in Proceedings IEEE International Conference on Systems, Man and Cybernetics, 2010, pp. 3529–3536.

    Google Scholar 

  • [SDPG13] B. Stahl; K.J. Diepold, J. Pohl; J. Greitemann, C. Plehn, J. Koch; B. Lohmann, G. Reinhart & M. Zäh, “Modeling Cyclic Interactions within a Production Environment using Transition Adaptive Recurrent Fuzzy Systems,” in Proceedings IFAC Conference on Manufacturing Modelling, Management and Control, 2013, pp. 3529–3536.

    Google Scholar 

  • [TCEF10] T. Tolio, D. Ceglarek, H. ElMaragh, A. Fischer, S. Hu, L. Laperrière, S. Newman & J. Váncza, “SPECIES - Co-evolution of products, processes and production systems,” in Annals of the CIRP 59, 2010, pp. 672–693.

    Google Scholar 

  • [ZRKS10] M. Zäh, G. Reinhart, F. Karl, S. Schindler, J. Pohl & C. Rimpau, “Cyclic influences within the production resource planning process,” in Production Engineering 4 58, 2010, pp. 309–317.

    Google Scholar 

  • [EvSc96] W. Eversheim & G. Schuh, „Betriebshütte - Produktion und Management,“ Springer. 1996.

    Google Scholar 

  • [ReKZ09] G. Reinhart, P. Krebs & M. Zäh, “Fuzzy logic-based integration of qualitative uncertainties into monetary factory evaluations,” in: IEEE International Conference on Control Automation (ICCA), 2009, pp. 85–391.

    Google Scholar 

  • [Fos86] R. Foster, “Innovation: The Attacker’s Advantage,” Summit Books, 1986.

    Google Scholar 

  • [HüAn94] U. Hülsheger & N. Anderson, „Team-level predictors of innovation at work: a comprehensive meta-analysis spanning three decades of research,” in Journal of Applied Psychology, 94, 2009, pp. 1128–1145.

    Google Scholar 

  • [MaMZ01] M. Marks, J. Mathieu & S. Zaccaro, “A temporally based framework and taxonomy of team processes,” in Academy of Management Review, 26, 2001, pp. 356-376.

    Google Scholar 

  • [Rec73] I. Rechenberg, “Evolutionsstrategie,” Frommann-Holzboog, 1973.

    Google Scholar 

  • [Whi94] D. Whitley, “A genetic algorithm tutorial,” in Statistic and Computing 4, 1994, pp. 65-85.

    Google Scholar 

  • [BGLS03] J.F. Bonnans, J.C. Gilbert, C. Lemarèchal & C.A. Sagastizàbal, “Numerical Optimization,” Springer, 2003.

    Google Scholar 

  • [TaWa01] K. Tanaka & H.O. Wang, “Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach,” John Wiley & Son, 2001.

    Google Scholar 

  • [HuGu06] H.Z. Huang & Y.K. Gu, “Modeling the Product Development Process as a Dynamic System with Feedback,” in Concurrent Engineering 14, 2006, pp. 283–291.

    Google Scholar 

  • [Dun04] A.S. Dunk, “Product life cycle cost analysis: the impact of customer profiling, competitive advantage, and quality of IS information,” in Management Accounting Research 15, 2004, pp. 401-414.

    Google Scholar 

  • [GeKi09] M. Gertler & N. Kiyotaki, “Financial Intermediation and Credit Policy in Business Cycle Analysis,” in Handbook of Monetary Economics 3, North-Holland, 2009.

    Google Scholar 

  • [DiWL10a] K.J. Diepold & F.J. Winkler & B. Lohmann, “Systematical Hybrid State Modelling of Complex Dynamical Systems: The Quad-I/HS Framework,” in Journal of Mathematical and Computer Modelling of Dynamical Systems 16 (4), 2010.

    Google Scholar 

  • [DiLo10b] K.J. Diepold & B. Lohmann, “Transient Probabilistic Recurrent Fuzzy Systems,” in IEEE International Conference on Systems, Man, and Cybernetics, 2010, pp. 3529-3536.

    Google Scholar 

  • [KiBSD14] T. M. Kindsmüller & F. G. H. Behncke & , B. Stahl & K. J. Diepold & M. C. Wickel & U. Lindemann & B. Lohmann, “ Mitigating the Effort for Engineering Changes in Product Development using a Fuzzy Expert System,” in IEEE International Conference on Management, 2014, submitted paper.

    Google Scholar 

  • [Fen06] G. Feng, “A Survey on Analysis and Design of Model-Based Fuzzy Control Systems,” in IEEE Transactions on Fuzzy Systems 14, 2006, pp. 676-697.

    Google Scholar 

  • [AdKe03] J. Adamy & R. Kempf, “Regularity and chaos in recurrent fuzzy systems,” in Fuzzy Sets and Systems 140, 2003, pp. 259-284.

    Google Scholar 

  • [Föl13] O. Föllinger, „Regelungstechnik“, 11. Auflage, VDE-Verlag 2013.

    Google Scholar 

  • [Lun97] L. Lunze, “Regelungstechick 2,” Springer, 1997.

    Google Scholar 

  • [AdKe03] J. Adamy & R. Kempf, “Regularity and chaos in recurrent fuzzy systems,” in Fuzzy Sets and Systems 140, 2003, pp. 259-284.

    Google Scholar 

  • [DiAl14] K.J. Diepold & K. Albert, “Lokale Stabilitätsanalyse von T-S Systemen unter Berücksichtigung ihres Gültigkeitsbereiches,“ at - Automatisierungstechnik, 2014, angenommener Beitrag.

    Google Scholar 

  • [AGLT01] D. Ancona, P. Goodman, B. Lawrence, & M. Tushman, “Time: a new research lens,” Academy of Management Review, vol. 26, no. 4, pp. 645–663, 2001.

    Google Scholar 

  • [AnHe09] C. Antoni, & G. Hertel, “Team processes, their antecedents and consequences: Implications for different types of teamwork,” European Journal of Work and Organizational Psychology, vol. 18, no. 3, pp. 253–266, 2009.

    Google Scholar 

  • [BaRK13] S. K. Baard, T. A. Rench, & S. W. Kozlowski, “Performance adaptation: A theoretical integration and review,” Journal of Management, vol. 20, pp. 1–52, 2013.

    Google Scholar 

  • [BrGu10] F. C. Brodbeck & Y. R. Guillaume, “Arbeiten in Gruppen,” in Enzyklopädie der Psychologie, Band Arbeitspsychologie, U. Kleinbeck & K.-H. Schmidt, Eds. Göttingen: Hogrefe, 2010, pp. 215-284.

    Google Scholar 

  • [BSSP06] C. S. Burke, K. C. Stagl, E. Salas, L. Pierce, & D. Kendall, “Understanding team adaptation,” Journal of Applied Psychology, vol. 91, pp. 1189–1207, 2006.

    Google Scholar 

  • [Dev02] D. J. Devine, “A review and integration of classification systems relevant to teams in organizations,” Group Dynamics: Theory, Research, and Practice, vol. 6, no. 4, pp. 291–310, 2002.

    Google Scholar 

  • [Dio00] K. L. Dion, “Group cohesion: From ’field of forces’ to multidimensional construct,” Group Dynamics: Theory, Research, and Practice, vol. 4, no. 1, pp. 7–26, 2000.

    Google Scholar 

  • [Hac87] J. R. Hackman, “The design of work teams,” in Handbook of organizational behavior, J. W. Lorsch, Eds. Englewood Cliffs, NJ: Prentice Hall, 1987, pp. 315-342.

    Google Scholar 

  • [HNHB03] J. R. Halbesleben, M. M. Novicevic, M. G. Harvey, M. R. Buckley, “Awareness of temporal complexity in leadership of creativity and innovation: a competency-based model,” The Leadership Quarterly, vol. 14, no. 4-5, pp. 433–454, 2003.

    Google Scholar 

  • [HüAS09] U. R. Hülsheger, N. Anderson, J. F. Salgado, “Team-level predictors of innovation at work: a comprehensive meta-analysis spanning three decades of research,” Journal of Applied Psychology, vol. 94, no. 5, pp. 1128–1145, 2009.

    Google Scholar 

  • [IHJJ05] D. R. Ilgen, J. R. Hollenbeck, M. Johnson, & D. Jundt, “Teams in Organizations: From Input-Process-Output Models to IMOI Models,” Annual Review of Psychology, vol. 56, no. 1, pp. 517–543, 2005.

    Google Scholar 

  • [KiRo99] B. L. Kirkman & B. Rosen, “Beyond self-management: Antecedents and consequences of team empowerment,” Academy of Management Journal, vol. 42, pp. 58–74, 1999.

    Google Scholar 

  • [KRTG04] B. L. Kirkman, B. Rosen, P. E. Tesluk, & C. B. Gibson, “The impact of team empowerment on virtual team performance: The moderating role of face-to-face interaction,” Academy of Management Journal, vol. 47, no. 2, pp. 175–192, 2004.

    Google Scholar 

  • [KGNS99] S. W. Kozlowski, S. M. Gully, E. R. Nason, & E. M. Smith, “Developing Adaptive Teams: A Theory of Compilation and Performance Across Levels and Time,” in Frontiers of industrial and organizational psychology. The changing nature of performance. Implications for staffing, motivation, and development, D. R. Ilgen & E. D. Pulakos, Eds. San Francisco: Jossey-Bass Publishers, 1999, pp. 240-292.

    Google Scholar 

  • [KRBB13a] G. K. Kugler, J. A. M. Reif, F. Behncke, F. C. Brodbeck, & U. Lindemann, “Business Processes in Complex Environments,” presented at the Conference of the European Association of Work and Organizational Psychology, 2013.

    Google Scholar 

  • [KRBB13b] K. G. Kugler, J. A. M. Reif, F. C. Brodbeck, F. Behncke, & U. Lindemann, “Arbeitsabläufe und Prozesse in einem komplexen Umfeld,” Zyklenmanagement Aktuell, vol. 4, pp. 13–15, 2013.

    Google Scholar 

  • [Rou06] V. Rousseau, “Teamwork Behaviors: A Review and an Integration of Frameworks,” Small Group Research, vol. 37, no. 5, pp. 540–570, 2006.

    Google Scholar 

  • [McG64] J. E. McGrath, Social psychology: A brief introduction, New York: Holt, Rinehart & Winston, 1964.

    Google Scholar 

  • [McAB00] J. E. McGrath, H. Arrow, & J. L. Berdahl, “The study of groups: Past, present, and future,” Personality and Social Psychology Review, vol. 4, pp. 95–105, 2000.

    Google Scholar 

  • [MaMZ01] M. A. Marks, J. E. Mathieu, & S. J. Zaccaro, “A Temporally Based Framework and Taxonomy of Team Processes,” The Academy of Management Review, vol. 26, no. 3, p. 356, 2001.

    Google Scholar 

  • [MaMa06] J. E. Mathieu & M. A. Marks, “Team process items”, Unpublished manuscript, University of Connecticut, 2006.

    Google Scholar 

  • [MMRG08] J. E. Mathieu, M. T. Maynard, T. Rapp, & L. Gilson, “Team Effectiveness 1997-2007: A Review of Recent Advancements and a Glimpse Into the Future,” Journal of Management, vol. 34, no. 3, pp. 410–476, 2008.

    Google Scholar 

  • [Wes02] M. West, “Sparkling fountains or stagnant ponds: an integrative model of creativity and innovation implementation in work groups,” Applied Psychology: An International Review, vol. 51, pp. 355–387, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Vogel-Heuser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vogel-Heuser, B., Lindemann, U., Reinhart, G. (2014). Prozessgrundlagen. In: Vogel-Heuser, B., Lindemann, U., Reinhart, G. (eds) Innovationsprozesse zyklenorientiert managen. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44932-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44932-5_2

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44931-8

  • Online ISBN: 978-3-662-44932-5

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics